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Abstract 

Predictive-coding has justifiably become a highly influential theory in Neuroscience. 

However, the possibility of its unfalsifiability has been raised. We argue that if predictive-

coding were unfalsifiable, it would be a problem, but there are patterns of behavioural and 

neuroimaging data that would stand against predictive-coding. 

Contra-predictive patterns are those in which the more expected stimulus generates the 

largest evoked-response. However, basic formulations of predictive-coding mandate that an 

expected stimulus should generate little, if any, prediction error and thus little, if any, 

evoked-response. It has, though, been argued that contra-predictive patterns can be 

obtained if precision is higher for expected stimuli. Certainly, using precision, one can 

increase the amplitude of an evoked-response, turning predictive into contra-predictive 

pattern. 

We demonstrate that, while this is true, it does not present an absolute barrier to 

falsification. This is because increasing precision also reduces latency and increases the 

frequency of the response. These properties can be used to determine whether precision-

weighting in predictive-coding justifiably explains a contra-predictive pattern, ensuring that 

predictive-coding is falsifiable. 

Introduction 

Predictive coding (Friston, 2018; Rao & Ballard, 1999; Clark, 2013) has proved to be one of 

the most influential theories in cognitive neuroscience, with many authors identifying brain 

responses that are consistent with the theory (e.g. Brodski-Guerniero et al, 2017; Den 

Ouden et al, 2012; Garrido, Kilner, Stephan & Friston, 2009; Bekinschtein et al, 2009; 

Shirazibeheshti et al, 2018; Witon et al, 2020). The most basic (vanilla) predictive coding 
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theory makes a particularly clear claim concerning the nature and presentation of evoked 

brain responses. We call this basic claim, the predictive pattern, and state it as follows: the 

brain’s (bottom-up) evoked response to a stimulus should reflect prediction errors. That is, 

the size of this bottom-up evoked response should reflect the size of the prediction error, 

i.e. completely unexpected stimuli should generate the largest evoked response, and stimuli 

that are “in all senses” expected should not generate an evoked response (we give further 

justification that this position is prominent in the field in Appendix 1: Further Justification 

of PC-Evoked model; see inline heading Evoked Response as Prediction Error). Consistent 

with this, there are many event-related potential responses that increase in size as a 

stimulus becomes more unexpected: classic examples are the mismatch-negativity 

(Näätänen, 1995; Garrido, Kilner, Stephan & Friston, 2009), the Odd-ball P3 (Donchin & 

Coles, 1988) and the N400 semantic anomaly (Kutas & Federmeier, 2011). Basic predictive 

coding beautifully explains these phenomena. 

One can interpret this link between predictive coding and evoked responses as a neuro-

biological realisation of Shannon’s efficient coding scheme (Shannon, 1948), a key 

characteristic of which is that to optimally compress communication, the more unlikely a 

message is, the longer/ more complex the code representing it should be. In other words, 

shorter codes should be reserved for more frequently occurring stimuli. If one relates the 

size of an evoked response to the code length, i.e. a larger, or perhaps more complex, 

evoked response corresponds to a longer/ more complex message being sent up the 

sensory processing pathway, the evoked response should be bigger/ more complex for more 

unexpected stimuli. This is the basic (vanilla) predictive coding theory of evoked response 

amplitude/ form. 

However, although predictive evoked response patterns are very common, contra-

predictive patterns (or strictly, contra vanilla predictive patterns) can also be observed – i.e. 

where the largest evoked response is generated by the most expected stimulus (e.g. Vidal-

Gran, Sokoliuk, Bowman & Cruse, 2020; Banellis, Sokoliuk, Wild, Bowman & Cruse, 2020). As 

highlighted in (Bowman, Filetti, Wyble & Olivers, 2013a), a case in point is pop-out/ 

breakthrough effects in M/EEG studies of conscious perception (Bowman, Filetti, Wyble & 

Olivers, 2013a; Bowman et al, 2013 & 2014; Banellis, Sokoliuk, Wild, Bowman & Cruse, 

2020). In this context, the brain is faced with stimuli presented on the threshold of 
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awareness, perhaps because noise has been overlaid (Davis et al, 2005) or because the brain 

is being deluged with fleeting stimuli (Potter & Levy, 1969; Vul, Hanus  & Kanwisher, 2009; 

Bowman & Avilés, 2021). Here, the perceptual system is attempting to select “salient” 

stimuli (where the term salient is broadly defined) from amongst the noisy or overloaded 

background, and stimuli are perceived as a “pop-out”/ breakthrough into awareness event 

(Davis et al, 2005; Banellis, Sokoliuk, Wild, Bowman & Cruse, 2020; Alsufyani et al, 2019; 

Bowman, Filetti, Alsufyani, Janssen & Su, 2014; Harris, Miller, Jose, Beech, Woodhams, & 

Bowman, 2021; Alsufyani, Harris, Zoumpoulaki, Filetti, & Bowman, 2021). 

A common way to incorporate these contra-predictive evoked response patterns into the 

predictive coding framework is to use top-down modulated precision-weighting of 

prediction errors, giving a refinement of vanilla predictive coding, which we call precision-

modulated Predictive Coding (or pmPC-Evoked)1. More specifically, if one argues that 

expected stimuli (e.g. standards in a mismatch paradigm) are treated as higher precision, 

perhaps because they engage attention more strongly, then one can generate larger 

responses for expected stimuli, essentially because the system has more “confidence” in 

their processing (Kok, Rahnev, Jehee, Lau & De Lange, 2012). Indeed, such an extension of 

the vanilla predictive coding framework is essential in order to reflect the strong top-down 

attentional effects that the brain exhibits. For example, a phenomenon such as Inattentional 

Blindness (Simons & Chabris, 1999) seems highly contra-predictive: a man jumping in a black 

gorilla’s costume in the middle of a basketball game would seem to be a clear prediction 

error, but it is not noticed by those counting passes between players in white. In order to 

accommodate this phenomenon, one has to assume that a strong task set turns black 

feature detectors right down, which, within the prediction framework, would amount to an 

 
1 Even in the early presentation of predictive coding by Rao and Ballard (1999), prediction errors were 
weighted with precisions. However, the Rao and Ballard precisions just reflected noise, specifically being the 
reciprocal of the sensory noise/variance; see also (Feldman & Friston, 2010). That is, precisions were not seen 
to be manipulable by top-down feedback. Our real interest in this paper is with top-down manipulation of 
these precisions; the term precision-modulated is specifically introduced to describe such top-down control of 
precision. 

The full predictive coding theory incorporates precision weighting both on prediction errors (i.e. 
likelihoods) and on priors.  Indeed, a good deal of the “richness” of the theory’s capacity to explain psychiatric 
conditions is associated with relative weighting strengths of these two classes of precisions (Yon & Frith, 2021). 
Additionally, even in Rao and Ballard (1999), precisions were present on both prediction errors (i.e. likelihoods) 
and priors.  However, for simplicity of presentation in this paper, we focus exclusively on precision modulation 
of prediction errors. 
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extremely low precision on black, quenching any prediction error that the gorilla may 

induce. 

A typical precision-modulation interpretation of attention can be found in Feldman and 

Friston (Feldman & Friston, 2010); further justification that this position is prominent in the 

literature can found in Appendix 2: Precision, Gain and Attention. This elegantly 

accommodates contra-predictive response patterns with the perception-as-inference 

perspective (Knill & Richards, 1996; Boring, 2008) that is central to predictive coding. For 

example, ignoring degrees of freedom, a two-sample t-test from inferential statistics can be 

expressed as a product of a prediction error term (difference of means) and a precision term 

(reciprocal of the standard deviation of the difference of means)2. 

Bowman, Filetti, Wyble & Olivers  (2013a) and more recent papers (Banellis, Sokoliuk, Wild, 

Bowman & Cruse, 2020, Heilbron & Chait, 2018) raised the possibility that using precision to 

re-weight predictive patterns to turn them into contra-predictive patterns offers 

considerable degrees of freedom to the theory, indeed, running the risk of generating an 

unfalsifiable theory3. In other words, predictive coding becomes tautological: any evoked 

response pattern can be accommodated by the theory and no experiment can be run that 

would produce a pattern of data that would ever stand against it.  

We consider predictive coding’s susceptibility to unfalsifiability here. We do this with simple 

neural simulations of evoked response patterns, where, under Occam’s Razor, we consider 

this simplicity to be an advantage. On the basis of these simulations, we then discuss how 

the field should effectively go forward in a fashion that could allow the possibility of 

falsification. 

In this way, we seek to differentiate between two claims: 1) predictive coding explains a 

large part of the behaviour of the brain; and 2) predictive coding explains all of the 

behaviour of the brain. A positive response to the first of these seems difficult to argue 

against – there is a substantial extent to which the brain seeks to predict the world. This 

 
2 In fact, Cohen's d would be an exact statistical analogue of this concept. 
3 Essentially, one has a case of the law of the excluded middle in classical logic, that is, ⊢ P ∨ ¬P, i.e. for any 
proposition P (which here would be a predictive evoked response pattern), the logical statement P or not P is 
true. 
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paper specifically considers whether the second of these claims is supported, or at least lays 

a foundation for how to empirically test it. 

Methods 

Neural Simulations 

Our simulations use a simple predictive coding model, called PC-evoked, which focusses on 

the mechanisms that directly drive the evoked response. This is depicted in figure 1 and 

described in the caption; full details can be found in Appendix 5: Details of PC-Evoked 

model. In these first simulations, we are interested in the first evoked transient following 

the onset of a stimulus. One reason for focussing on this is that it is the brain response that 

can most easily be studied, as it is not contaminated by overlaid feedback components. 

Although, we will add a second (higher-level) circuit to this model later in the paper. 

We would argue that the simplicity of our model is a virtue. Importantly, our modelling 

objective is not to build a neural network model that can classify stimuli, predict on a 

variable or even implement a working generative model. Rather, our objective is to illustrate 

canonical patterns of brain responses. From an Occam’s Razor perspective, the simpler the 

model that enables you to do this, the better, i.e. if one can differentiate amongst key 

hypotheses with a simple model, one should prefer that. Additionally, we relate our model 

to the classic model by Rao and Ballard (1999) in Appendix 1: Further Justification of PC-

Evoked model. 
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Figure 1: depiction of PC-evoked model: [A] two stimulus circuits are included, which are 

called Stimulus 1 and Stimulus 2. The first level contains an early prediction error unit 

(Stim1_1 or Stim2_1), which is excited by the input, but inhibited by a prediction unit. Thus, 

the activation of a prediction unit reflects how expected that stimulus is (according to recent 

presentations), and the activation of a first level prediction error unit can be quenched 

through inhibition, if it is strongly predicted. However, this activation is also modulated by a 

top-down precision signal, which adjusts the gain on first level prediction error units. The 

evoked response is modelled as the post synaptic activation entering the second level relay 

unit (Stim1_2 or Stim2_2). This is an analogue of the dendritic currents that are known to 

underlie the M/EEG signal (da Silva, 2004; Murakami & Okada, 2006). [B] Input time-series 
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are injected into the Stimulus 1 and Stimulus 2 circuits at s1, respectively s2, with gamma 

shaped stimulus deflections. We show the stimulus presentation associated with a Standard 

condition: Stimulus 1 presented twice (at s1) and no Stimulus 2 (at s2). The presentation for a 

Deviant condition involves an initial presentation (at s2) of Stimulus 2 (deflection earlier in 

time) and then (at s1) of Stimulus 1 (the deviant).  

The activation equations we use are inspired by those in O’Reilly and Munakata (2000), 

which have similarities to those introduced by Grossberg (Ellias & Grossberg, 1975) and to 

Hodgkin-Huxley equations (Ermentrout et al, 2010). 

Membrane potential: the membrane potential is the key measure of how excited a neuron 

is; its dynamics are described by the following ordinary differential equation: 

�̇�(𝑡) = 𝜌(𝑡) ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

where 𝑡 ∈ ℝ≥0. Here, �̇� is the first time-derivative of the membrane potential, �̇�; 𝜌 is a 

(time-varying) neural responsiveness, and 𝐼𝑛𝑒𝑡 is the net current. For simulation, the 

equation was discretised and numerically integrated using a 4th order Runge-Kutta method. 

For simplicity, neurons have the identity function as the output mapping, i.e. it is this 

membrane potential that is output. 

Net current: the net current is a sum of excitatory, inhibitory and leak currents: 

𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑖(𝑡) + 𝐼𝑙(𝑡) 

Individual currents: equations for the contributing currents have the same basic form: 

𝐼𝑒(𝑡) = 𝑔𝑒(𝑡) ⋅ 𝐺𝑒 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉(𝑡)) 

𝐼𝑖(𝑡) = 𝑔𝑖(𝑡) ⋅ 𝐺𝑖 ⋅ (𝑅𝑒𝑣𝑖 − 𝑉(𝑡)) 

𝐼𝑙(𝑡) = 𝑔𝑙(𝑡) ⋅ 𝐺𝑙 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉(𝑡)) 

where, first considering constants, 𝐺𝑒, 𝐺𝑖 and 𝐺𝑙 are maximum conductances, one for each 

channel, reflecting the maximum extent that a channel can be open, and 𝑅𝑒𝑣𝑒, 𝑅𝑒𝑣𝑖 and 

𝑅𝑒𝑣𝑙 are reversal potentials (also called driving potentials or equilibrium channel 

potentials), one for each channel. 𝑔𝑒(𝑡) is the extent to which the excitatory channels are 

open at time 𝑡 and mediates the action of excitatory inputs, such as those from the stimulus 

or a pre-synaptic unit. Similarly, 𝑔𝑖(𝑡) is the extent to which the inhibitory channels are 
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open and mediates the action of inhibitory inputs coming from the prediction units. 𝑔𝑙(𝑡) 

models the opening of leak channels, which are, in fact, always fully open, and so for all 𝑡, 

𝑔𝑙(𝑡) = 1. The reversal potentials bound the values that the membrane potential can take, 

with 𝑅𝑒𝑣𝑒 = 1, giving the top of the range and 𝑅𝑒𝑣𝑖 = 𝑅𝑒𝑣𝑙 = 0, the bottom. Thus, the 

(𝑅𝑒𝑣𝑒 − 𝑉(𝑡)) term ensures that excitation drives the membrane potential up towards the 

top of its range, while (𝑅𝑒𝑣𝑖 − 𝑉(𝑡)), respectively (𝑅𝑒𝑣𝑙 − 𝑉(𝑡)), ensure that inhibition, 

respectively leak, drives it down to the bottom. Thus, the excitatory current has a positive 

polarity, while inhibition and leak are negative. 

Time-dependent conductances: Additionally, the excitatory and inhibitory time-dependent 

conductances are set to be sums of weighted inputs. Thus, the extent to which a 

conductance channel is open at a particular time point, is determined by the efficiency of 

the synapses containing the channel and the corresponding presynaptic activations. Neuro-

physiologically, the product of the presynaptic activations and their synaptic efficiencies 

determines the quantity of the corresponding neurotransmitter (e.g. glutamate for 

excitation and GABA for inhibition) that is released into the synaptic cleft, thereby opening 

ion channels. This electrochemical process is abstracted away from, by simply setting time-

dependent conductances to sums of weighted inputs, e.g. with neuron indices added to our 

notation (𝑗 for the current unit and 𝑘 for pre-synaptic units) for excitation, 

𝑔𝑒,𝑗(𝑡) = ∑ 𝑤𝑘𝑗𝐴𝑘(𝑡),       𝑤ℎ𝑒𝑟𝑒 𝐴𝑟(𝑡)

𝑘

= 𝑉𝑟(𝑡) 

and similarly for 𝑔𝑖,𝑗(𝑡), the time-dependent Inhibitory conductance. As previously 

discussed, for simplicity we do not include an activation function and thus, the output 

activation of a unit is simply its current membrane potential. 

Neural Responsiveness: 𝜌, which in electrical terms could be related to the reciprocal of the 

capacitance, is defined as follows: 

𝜌(𝑡) = 𝜏 + (1 − 𝜏) ⋅ (1 − 1
𝑒𝜋(𝑡)⁄ )  (Eqn Responsiveness) 

where 𝜏 (0 < 𝜏 ≤ 1) is a time-constant, and 𝜋(𝑡) is a time-varying precision, which is 

subject to the constraint that ∀𝑡 ∈ ℝ≥0 ∙ 𝜋(𝑡) ≥ 0. Thus, the time-constant provides a basic 

responsiveness, i.e., update rate, but this increases as precision, 𝜋, increases, as one would 
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expect from an increase of gain. The relationship between precision and responsiveness is 

shown in figure 2, and the association of precision with responsiveness and gain is further 

justified in Appendix 2: Precision, Gain and Attention, with formal justification in Appendix 

3: Mathematical Definition of Responsiveness. 

 

Figure 2: neural responsiveness by precision: precision (𝜋) is shown on the x-axis and 

responsiveness (𝜌) on the y-axis. The (basic) time constant (𝜏) is set to 0.05. As a result, 

responsiveness is 0.05, when precision is zero. Responsiveness rises as precision increases, 

asymptotically approaching 1 for large precisions. 

Evoked response: the M/EEG signal originates from dendritic currents (da Silva, 2004), the 

closest analogue of which is the net current, 𝐼𝑛𝑒𝑡. Thus, the evoked response is defined as 

follows, 

𝐸𝑣𝑜𝑘𝑒𝑑(𝑡) = 𝐶 ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

where, 𝐶 = −10 scales the net current, which flips polarity, in order that our model can be 

related to mismatch negativity data4. 

 
4 Physiologically, the fact that we set C to a negative number reflects the orientation of the electrical dipole in 
the brain to the electrode at which the component is recorded from. At the electrode the mismatch negativity 
is typically recorded from, it manifests as an initially negative-going component. If we could place an electrode 
on the other side of the electrical dipole, it would be initially positive-going. This mapping from brain dipole to 
electrode would be reflected in a forward/lead-field model in source localisation algorithms, which exactly 
map from time-series in the brain to a response at the sensor (i.e. electrode) level. 
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Ensemble response: one interpretation of the M/EEG signal is that it is the result of 

averaging over the dendritic currents of large neuronal populations. More or fewer neurons 

may be active in these ensembles at any one time, leading to additive effects on the 

measured current, 𝐸𝑣𝑜𝑘𝑒𝑑(𝑡). We therefore define an ensemble response as such, 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑡) = 𝐸𝑣𝑜𝑘𝑒𝑑(𝑡) ⋅ 𝐼𝑐  

where 𝐼𝑐 ∈ ℝ≥0 is a scaling constant. The additive ensemble response provides an 

alternative response pattern to the multiplicative effects of precision realised as neural 

responsiveness. In this way, this ensemble response will serve as a contrast condition to 

which the multiplicative effects can be juxtaposed. 

Running Model: When a simulation is run, all constants are set by hand and all time-varying 

parameters are initialized at zero. Since we are generating Event Related Potentials, we sum 

the activation of the Evoked response from the two stimulus circuits. 

Time-frequency analysis 

For our time-frequency analysis, we obtained the power of the evoked response through a             

Morlet wavelet transform of the data. The wavelets were defined as such: 

𝛹(𝑓, 𝑡) = 𝑒𝑥𝑝(2𝑖𝜋𝑓𝑡) ⋅ 𝑒𝑥𝑝 (−
𝑡2

2𝜎2
) 

Where 𝑓 denotes the frequency of interest, 𝑡 denotes time, 𝑖 is the imaginary unit and 𝜎 is 

the standard deviation of the Gaussian envelope, defined using the (frequency-varying) 

wavenumber k: 

𝜎 =
𝑘(𝑓)

2𝜋𝑓
 

We analysed 50 linearly spaced frequencies ranging from 1-40Hz. The wavenumber ranged 

from 4 to 10 cycles and was increased logarithmically with the frequency of interest to 

ensure greater temporal precision of low-frequency signal components. Wavelets were 

convolved with the evoked signal (𝐸𝑣𝑜𝑘𝑒𝑑(𝑡)) via frequency-domain multiplication after 

being passed through a Fast Fourier Transform (FFT). An inverse FFT was used to recover the 

time-domain signal and power was extracted by taking the squared absolute of this signal. 
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Results 

Simulations 

Vanilla predictive pattern 

Figure 3A presents a classic predictive evoked response pattern. The PC-evoked model was 

run with precision set to zero. Thus, we are observing vanilla prediction errors, without 

precision-modulation. The response to the repeated (standard) stimulus is lower amplitude 

(i.e., less extreme from zero) than the response to the non-repeated (deviant) stimulus. This 

is caused by the inhibitory projection from the Stim1 prediction unit, which is strongly active 

for the second presentation in the standard condition, because stimulus 1 was previously 

presented, but not in the deviant condition. 
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Figure 3: predictive and non-predictive patterns from PC-evoked model: in all cases, we are 

showing the response to the second (always Stimulus 1) of two stimulus presentations. In the 

Deviant case, Stimulus 2 was previously presented; in contrast, in the Standard case, it was 

Stimulus 1. [A] Predictive pattern, with precision parameter, 𝜋, set to zero (see Simulation 1, 

Appendix 5). [B] Contra-predictive pattern generated using precision parameter. By 

increasing precision (the 𝜋 parameter) onto Stimulus 1 (but not Stimulus 2), the standard can 

be made higher amplitude  (see Simulation 3, Appendix 5). In this way, a predictive pattern 

can be turned into a contra-predictive pattern, ultimately, [C] with standard substantially 

higher in amplitude (i.e. more extreme from zero) than deviant when precision is 0.54  (see 

Simulation 2, Appendix 5). 

When configured with a precision of zero, the response to the Deviant will not be smaller 

than for the Standard, i.e., a contra-predictive pattern cannot be generated. 

Contra-predictive pattern 

However, by increasing the precision parameter (𝜋), one can obtain a contra-predictive 

pattern from the PC-evoked model. This is shown in figure 3[B&C], where increasing 

precision can generate an evoked response for the standard that is larger in amplitude than 

the evoked response for the deviant. This is because precision is a gain parameter, which 

can be used to “turn-up” the evoked response. Thus, once precision is added into the PC-

evoked model, and precision-modulated prediction errors are being generated, both classic 

predictive patterns (low or zero precision), as well as contra-predictive patterns (large 

precision) can be generated from the model. 

Of course, there is one situation in which increasing precision would not be able to turn a 

predictive into a contra-predictive pattern. This is if the Standard generated zero prediction 

error, i.e. the stimulus was completely expected. In this situation, it does not matter how 

large precision (𝜋) is, since it is multiplied with nothing, the precision-modulated prediction 

error (i.e. the evoked response) will be zero. 

However, from a philosophical perspective, it may be argued that perfect prediction is 

impossible, i.e. there is always a prediction error, even if it is extremely small. Indeed, the 

presence of noise in the brain, might be argued to prevent a brain signal from ever perfectly 

matching the expected signal. 
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Thus, this capacity to generate both predictive and contra-predictive patterns from a theory 

based upon precision-modulated prediction errors, does raise the possibility that predictive 

coding becomes unfalsifiable. That is, one arrives at a situation in which, whatever pattern 

any experiment generates, it can be accommodated within the theory, i.e. there is no 

experiment that can (at least qualitatively) be run that could find definitive evidence against 

the theory. 

However, the results in figure 3[B&C] suggest that this absolute unfalsifiability may not in 

fact be the case. Specifically, if precision-modulation is used to generate a contra-predictive 

pattern, it implies a latency change; that is, one can make the standard bigger than the 

deviant by increasing precision, but that has the knock-on consequence that latency 

shortens. Very simply, this arises from the link between precision and gain: increasing gain, 

increases neural responsiveness, and increased responsiveness implies reduced latency, as 

well as increased amplitude. 

Thus, a finding of a contra-predictive pattern (evoked-standard larger than evoked-deviant) 

in which the latency of the standard is not less than the latency of the deviant, would stand 

against predictive coding. 

Characteristics of Contra-predictive Pattern 

Modulation of Latency: As just indicated, perhaps our main contention is that, while a 

contra-predictive pattern can be generated from a predictive coding model by titrating 

precision modulation, suggesting unfalsifiability, that titration does have consequences. 

These consequences yield a new set of predictions that could be the focus of further 

empirical work. We explored these consequences in the PC-evoked model. As shown in 

figure 4[A], as precision is increased, amplitude increases (more negative for a negative 

component). This is the basic mechanism that enables a contra-predictive evoked response 

to be generated from a predictive-coding model and is evident in figure 3[B&C]. Also, we 

can clearly see that the pattern observed is non-linear, reflecting the fact that precision is a 

multiplicative term in the activation equations. This non-linearity is also shaped by 

progression towards saturation. 
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Importantly, also evident in figure 3[B&C], is a reduction in latency with increasing precision. 

This relationship is characterised in figure 4[B]. Indeed, this reduction in latency exhibits a 

very similar characteristic pattern to the increase in amplitude (for a negative component). 

These coincidental increases in amplitude and reduction in latency arise simply because an 

increase in precision is really an increase in gain. If one pushes the gain up, a system will 

respond both more quickly and with greater strength. This is shown by the near linear 

relationship between amplitude and latency observed for this particular formulation of 

predictive coding in figure 4[C]. 

 

Figure 4: results of running PC-evoked model (see Simulation 3, Appendix 5) to characterise 

properties of contra-predictive pattern. As precision increases, [A] component amplitude 

(here of first negativity) increases (down on y-axis), [B] latency of component decreases, and 

[C] for this configuration of the model, an almost linear relationship between amplitude and 

latency is observed. 
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Thus, the relationships characterised in figure 4, suggests a constraint on the contra-

predictive pattern that can be generated by the predictive coding framework. That is, if a 

claim is made that precision is enabling an empirically observed contra-predictive pattern to 

be viewed as consistent with predictive coding, then that argument can only be sustained if 

latencies reduce (or at least do not increase) with the putative increase in precision. 

Evoked Frequency Characteristics: the contra-predictive pattern shown in figure 3[B&C] also 

generates characteristic evoked patterns in the frequency domain; see figure 5. This is 

nothing more than a change of the data feature space. However, it may be that time-

frequency plots offer a particularly clear representation of the discriminating features of the 

contra-predictive pattern. In particular, we can identify the following characteristics of the 

time-frequency plots for a Standard, as precision increases. 

1. The maximum of the power feature moves to higher frequencies as precision 

increases; see figure 5, particularly panels C, and D. The former of these shows the 

qualitative change in the frequency feature with amplitude differences normalised 

away. Changes to precision, and thereby to the gain, can also be viewed as adjusting 

the effective time constant. Increasing the time constant makes the neuron more 

responsive; that is, in response to stimulation, the neuron will increase its 

membrane potential more rapidly, as well as, decaying faster when driving input is 

removed. The resulting change in the shape of the evoked components, which can 

be seen in figure 3[B&C], generate the increase in maximum frequency. 

2. As evident in figure 4, increasing precision, increases amplitude (more extreme from 

zero) and reduces latencies. In the frequency domain, this manifests as an increase 

in power (not shown in figure 5 due to normalisation) and reduction in latency of the 

point of maximum power (see figure 5[C,D]). 

Figure 5[D] is probably the best summary of the changes in time-frequency features we are 

proposing to accompany the generation of a contra-predictive evoked response pattern 

from predictive coding. It can be clearly seen that the increase in precision causes a 

simultaneous reduction in latency and increase in frequency, here with a linear trajectory. 
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Figure 5: frequency domain features of contra-predictive pattern obtained from PC-evoked 

model  (see Simulation 3, Appendix 5). Panels A, B and C are simple time-frequency plots; 

panel D contains four such plots that are overlaid on top of each other, with some 

transparency added to each constituent plot. [A] time-frequency feature obtained when 

precision is low. [B] time-frequency feature obtained when precision is high. Panels A and B 

have been amplitude-normalised, such that the maximum power was one and the minimum 

power zero in both plots. This allows one to see qualitative changes in signal, unobscured by 

amplitude differences. [C] panel B minus panel A. [D] time-frequency plots for four values of 

precision overlaid on one another, with the time-frequency point of maximum power 

indicated for each plot. Clearly, as precision increases, the point of maximum power moves 

simultaneously earlier and to higher frequencies, here following a linear trajectory.  
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Contrast with Additive Ensemble Effects: Are there ways of producing contra-predictive 

patterns that lack the empirical foothold of latency modulation? It is possible to produce 

contra-predictive patterns without twin amplitude-latency effects by titrating a scaling 

constant of the evoked response. The scaling modulation acts to model additive ensemble 

effects, i.e. the recruitment of a different quantity of neurons in the response. As evoked 

potentials find their origin in current summation over the dendrites and soma of responding 

cells, the ensemble effect is additive and only modulates amplitude. We can therefore 

contrast this response pattern to the contra-predictive pattern produced by precision-

modulation. 

As shown in Figure 6, titrating the scaling constant allows one to produce contra-predictive 

evoked responses. Increasing the constant will increase the amplitude, as is the case with 

precision-modulation. However, whereas the effects of precision modulation are non-linear 

and saturating, (as implemented in PC-evoked) the effects of scale modulation are linear 

and non-saturating. Most importantly, there is no reduction in latency with increased 

scaling. The system is not responding with greater speed, only greater strength. This 

strength can be smoothly and linearly modulated, in the context of the model, to achieve 

any desired amplitude pattern – predictive or contra-predictive. 
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Figure 6: contra-predictive pattern generated using the scaling parameter (see Simulation 2, 

Appendix 5). As in figure 3[B&C], we take a standard response (to Stimulus 1 after a previous 

Stimulus 1 presentation) and titrate the value of a parameter in order to increase the 

amplitude of the evoked response. Here, we have increased the value of the scaling 

parameter, 𝐼𝑐, from 1 to 2 in steps of 0.05. 

The frequency characteristics of ensemble-modulation (found in Figure App 5[A,B,C] in 

appendix 6) also differ from those of precision-modulation. An ensemble-modulation 

increases the power across the component, and particularly at the point of maximum 

power. The component becomes broader both in time and frequency. However, the peak of 

the component remains stationary as the scaling constant is increased. Thus, the peak 

frequency does not change. 

This ensemble-modulation hypothesis corresponds to one of the two most prominent 

theories of how ERP components arise in the brain: a pure power increase rather than a 

phase-reset (Fell, Dietl, Grunwald, Kurthen, Klaver, Trautner, ... & Fernández, 2004; Min, 

Busch, Debener, Kranczioch, Hanslmayr, Engel & Herrmann, 2007). That is, an ERP 

component could increase simply because more neurons (of the same basic kind) are 
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activated in response to a stimulus presentation, generating a simple increase in power, 

without a corresponding increase in phase consistency across trials (the marker of a phase-

reset). 

In the context in which we are considering this additive ensemble increase to happen, i.e. 

when a stimulus is expected, one obtains a theory quite different to predictive coding (see 

figure App 5  in appendix 6), regardless of whether prediction errors are vanilla or precision-

weighted. That is, the more expected a stimulus is, the more neurons become excited, and 

indeed, we will argue, see subsection “The P3 in Rapid Serial Visual Presentation (RSVP)”, 

that presenting stimuli on the fringe of awareness may be a way to elicit higher amplitude 

responses for expected stimuli. 

This “more neurons for more expected stimuli” hypothesis contrasts with what one would 

expect from the Shannon efficient coding theorem (Shannon, 1948), which would suggest 

that more neural/ representational resource should be deployed to represent more 

unexpected stimuli. Indeed, notwithstanding the discussion early in the section “Contra-

predictive pattern”, if it were possible for a stimulus to be 100% expected, there would be 

no need for any prediction error neurons to be active. 

Sustained Prediction 

We can also ask whether the PC-evoked model makes predictions about predictive coding 

more broadly – predictions that could be used to test the veracity of both vanilla and 

precision-modulated predictive coding. The common denominator between the two 

variations is the suppression of prediction error units via top-down inhibition5 and the 

propagation of a prediction error through the cortical hierarchy. We could ask: what 

happens to the prediction error as the stimulus approaches complete predictability? 

We therefore presented the PC-evoked model with 45 repeated stimuli in close succession.  

Predictive coding might be considered to suggest that – as the stimulus becomes more and 

more predictable – the prediction error will tend toward zero. In other words, the stimulus 

 
5 Although, see Rauss and Pourtois (2013) for an alternative view of the use of the terms top-down and 
bottom-up in predictive coding. 
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will become completely predictable, and so, one might expect that the prediction units will 

perfectly inhibit the prediction error units, generating a null response. 

 

Figure 7: evoked responses from PC-evoked model under repetition of stimuli  (see 

Simulation 4, Appendix 5).  [A] evoked responses to repetitive stimuli with no modifications 

to the model from earlier sections. [B] evoked responses to repetitive stimuli after 

modifications to model. The time-constant, 𝜏𝑝, for the Stim1 prediction unit was reduced 

from 0.04 to 0.005, i.e. stimuli induce more temporally sustained predictions. The weight 

from the prediction unit to the prediction error unit was increased from 14.5 to 100, i.e. 

much stronger suppression of predicted stimuli. [C] same settings as [B] in all respects apart 

from removal of Excitatory Reversal term (see Simulation 5, Appendix 5). Purple line in [B] 

and [C] is the membrane potential of the prediction unit, showing that it ends up higher in 

[C] than in [B]. This is due to the removal of the Reversal term from the prediction unit, 

which, in [B], limits the excitatory drive, i.e. constrains how excited the prediction unit can 

get, and thus how much it can suppress the bottom up response. 
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What we find in the PC-evoked model (Figure 7[A]) is a large prediction error for the first 

presentation followed by a rapid stabilisation of response amplitude to the successive 

presentations of the stimuli. The prediction error amplitude stabilises by around the seventh 

or eighth presentation and is not much lower than the onset transient at the start of the 

stream.  

In the attempt to generate a null response (zero prediction error), we modified the PC-

evoked model in two ways: reducing the value of the time constant and increasing the 

weight of the prediction unit’s projection. This has the effect of allowing prediction to 

‘stack-up’ more effectively over time by slowing down the return of the membrane potential 

of the prediction unit to its resting value. Additionally, the increased inhibitory weight 

increases the suppression of excitation in the prediction error units. These modifications 

result in a prolonged decrease of the prediction error with each stimulus presentation 

(Figure 7[B]), leading to a very substantial reduction in amplitude relative to the onset 

transients, although the attractor dynamics in the PC-evoked model mean that the 

prediction error is never completely quenched.  

We then went further in attempting to reach an absolute quenching of the prediction error 

response (Figure 7[C]). We removed the reversal term in the calculation of excitatory 

currents. The relevant term in our equations is as follows: 

𝐼𝑒(𝑡) = 𝑔𝑒(𝑡) ⋅ 𝐺𝑒 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉(𝑡)) 

We change this term to the following: 

𝐼𝑒(𝑡) = 𝑔𝑒(𝑡) ⋅ 𝐺𝑒 

This change brings the model more into line with Rao & Ballard’s equations (see subsection 

Removal of Excitatory Reversal Term in appendix 1, Further Justification of PC-Evoked 

model). Our simulations show that with this change, one can obtain a full quenching to zero. 

This is because the upper bound on excitation (which is present with our basic equations) 

has been removed and the prediction unit can become more excited and clamp down 

further on the prediction error unit. 

In conclusion, perhaps surprisingly, the combination of the attractor dynamics of the 

predictive coding circuit and the possibility that predictions may evaporate rapidly, means 
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that predictive coding, as realised in the (basic) PC-evoked model, does not definitively 

imply the possibility to completely quench the evoked response. It is within the parameter 

space of the model to obtain a substantial (even complete if the excitatory reversal 

potential is removed) quenching, but it is not mandated. 

Informal Predictions of Contra-predictive Pattern 

Taking inspiration from the PC-evoked model, we can also highlight some informal 

predictions. Notably, these informal predictions are in some sense more general then our 

previous predictions, since they are not dependent upon our model of evoked responses. 

Sensory Noise vs Attention 

One aspect of a basic predictive coding theory is that noise (for example, sensory noise) and 

attention act on the same variable, i.e. precision. One could parametrically manipulate the 

sensory noise on its own and attention on its own and ask whether these two manipulations 

have the same effect on the features of the evoked response. If they do have different 

effects on these features, it suggests they are not mediated by a common mechanism, 

which would be precision.  For example, the amplitude of the response might change 

linearly with one, but logarithmically with the other.  One could plot the panels in figures 5 

and 6 for separate manipulations of attention and sensory noise, and ask the question, do 

these exhibit the same relationships with latency, amplitude and frequency? 

Counter-intuitive Prediction 

The most telling predictions that can be made by a theory are those that would only be true 

if the theory were true. In this sense, you could think of such predictions as “counter-

intuitive” from the perspective of all other theories. If such a counter-intuitive prediction is 

demonstrated, it provides strong evidence for the theory. A good example of this would be 

the empirical effort to verify General Relativity by observing the position of stars during an 

eclipse in order to measure the gravitational deflection of starlight passing near the Sun 

(Coles, 2001).  

We tentatively offer the following prediction. 

Shared channel saturation effect 
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Precision-modulated predictive coding would seem to imply that sensory noise and 

attention act on the same variable, i.e. precision. In this sense, the theory suggests that 

sensory noise and attention share the same “channel”. This suggests that they share a 

ceiling. Thus, when each is manipulated alone to improve performance, they should 

asymptote at the same performance level. 

This shared-channel also suggests the presence of an interaction. 

Interaction between sensory noise and attention: as shown in figures 4 and 5, the model 

suggests a saturation effect on precision. Since sensory noise and attention share the same 

channel, elevation of precision through reduced sensory noise, should reduce the effect of 

attention, simply because there is less dynamic range of the precision variable for attention 

to act on as saturation is approached. Figure 8[B] shows a potential interaction pattern that 

would reflect this shared-channel saturation effect. For example, for behavioural accuracy 

or amplitude of a positive going magneto-electrophysiological component, the effect of 

attention should be reduced as sensory noise reduces. Such an interaction could be tested 

with a range of behavioural and physiological measures, although, the direction of the 

dependent variable axis would change if, for example, reaction times, component latency or 

amplitude of a negative going component was under consideration. 

One could push this interaction phenomenon to its limit and completely quench any effect 

of attention. That is, one could experimentally reduce sensory noise to a point of saturation 

of the precision parameter, i.e. where further reduction in sensory noise has no impact on 

the dependent variable. If sensory noise and attention share the same channel, at this 

saturation point, attention should have no effect. 

These interaction effects would be especially compelling if one could also show that the 

observed interaction is not caused by an absolute “overall” ceiling. There will be ceilings to 

all dependent variables, but we are specifically interested in one associated with attention 

and the impact of noise.  So, the demonstration would be particularly telling if it were 

possible to demonstrate that the observed ceiling effect is specific to the precision channel 

and that manipulation of other variables could place performance beyond that obtained 

through its manipulation. 
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This prediction could be explored in a simple behavioural-MEEG experiment in which 

attention is manipulated through (highly predictable) spatial cueing (see, for example, the 

Posner Cueing task (Posner, 1980)) and random visual noise is overlaid on the stimuli. These 

predictions would suggest that as the environment becomes more reliable (i.e. less noisy), 

the impact of attention reduces. Indeed, the prediction might suggest that cueing has its 

biggest effect when sensory noise is at its highest, e.g. when it is most difficult to detect the 

cue and the target from amongst noise. These might be considered counter-intuitive 

predictions, simply because one may believe that attention would have more effect when 

stimuli are more easily discriminated, i.e. the environment has the least sensory noise. 

Another way to think about this experiment is that it is considering whether sensory noise 

and attention have the same or different saturation ceilings. If they have different 

saturation ceilings, then they represent different variables. To be clear, this finding would 

not necessarily stand against the notion that attention controls gain, a notion that attention 

theorists have subscribed to for a very long time (e.g. Cave, 1999; Mozer & Baldwin, 2007 

and Wyble, et al, 2009; and see subsection “Confidence, Attention and the Predicted” in the 

Discussion section). Rather, it would suggest that attention does not act upon the precision 

variable originally conceptualised in predictive coding theories (Rao & Ballard, 1999), as 

variability due to noise. 
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Figure 8: [A] ERPs of Posner task from Mangun & Hillyard (1991). Occipital electrodes are 

shown.  Time-series are shown from the onset of the target (following a central cue, which 

pointed with equal probability towards either the left or the right). The target could appear 

in either visual field, giving ipsilateral and contralateral evoked responses for target in left or 

in right visual fields. Positive is plotted down. The clearest pattern is one whereby both P1 

and N1 are higher amplitude for valid (i.e. expected) trials. [B] potential (counter-intuitive) 

interaction emerging from shared-channel saturation effect: a sensory noise manipulation is 

crossed with an attention manipulation. Due to proximity to ceiling for the precision 

variable, the high noise condition (small precision) should exhibit a stronger effect of 

attention then the low noise condition (high precision). The dependent variable could be 

behavioural, e.g. accuracy, or physiological, e.g. component amplitude (positive going). 

Reaction time or component latency could also serve as the dependent variable, but with the 

direction of the dependent variable reversed. [C] A typical RSVP experiment, with positive 

plotted upwards. Each individual distractor appears very rarely (once or twice), while pre-
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specified Targets appear frequently. A large evoked response is observed for the Target (a P3 

component), but effectively, no such response is elicited for distractors, save for the much 

lower amplitude steady-state visually evoked potential, which oscillates at the frequency of 

the stream (7.5 hz). A control condition (here called Irrelevant) is also displayed, in which a 

task-Irrelevant stimulus is presented as many times as the Target. This does not induce a P3, 

since the Irrelevant is not being searched for. However, of most relevance here, this 

condition shows the sequence of transients set-up by distractors, unaffected by the 

occurrence of a P3, with their low amplitude relative to the P3 being evident. 

Empirical Evidence 

We present the following pieces of empirical evidence related to the predictive vs contra-

predictive question. Importantly, our objective in this paper is not to definitively disprove 

predictive coding, but rather lay down an experimental framework in which it could be disproved. 

Part of the reason for an “Empirical Evidence” section is to highlighted published experiments that 

could be adjusted to become valid tests of the predictions we have identified. 

Contra-predictive pattern in Posner task 

Mangun & Hillyard (1991) observed a strongly contra-predictive ERP pattern for early 

transients on the Posner task. Figure 8A reproduces their data, in general showing a much 

larger P1 (and N1) transient for the validly cued target. This is the opposite pattern to that 

expected by vanilla predictive coding. Typically, the increased amplitude for valid cuing 

looks most like a scaling (additive ensemble) effect, apart from Ipsilateral in the right visual 

field (see panel Aiv), which might be exhibiting a pattern consistent with an increased gain. 

The P3 in Rapid Serial Visual Presentation (RSVP) 

Bowman, Filetti, Wyble & Olivers (2013a) highlighted the P3 evoked response in RSVP 

streams as a contra-predictive pattern. Importantly, the P3 may behave quite differently in 

the context of conscious break-through experiments compared to experiments in which all 

stimuli are presented clearly above the threshold of awareness; see discussion section of 

Pincham, Bowman & Szucs (2016). In particular, classic Odd-Ball experiments, where 

conscious break-through is not an issue, elicit canonical (vanilla) predictive patterns (Polich, 

1986; Donchin & Coles, 1988). 
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However, in RSVP search experiments, participants look for and find the same target in very 

many trials, thus the target stimulus becomes highly predictable. Nonetheless, contrary to a 

vanilla predictive pattern, the target elicits a very high amplitude evoked response.  

The ERP in figure 8[C] shows this phenomenon. RSVP streams were of faces presented at an 

SOA of 133ms, i.e. with a presentation frequency of 7.5 hz. The band passed by the filter 

was 0.1 to 30 hz. Within a block, a single Target was searched for, which was a famous face, 

e.g. the face of Donald Trump. The target was presented 12 times during a block. Distractors 

were sampled at random (with replacement) from a large database of (560) faces. Within a 

block, most distractors that occurred, were only presented once. Thus, they are much less 

expected than targets. For more details see, Aviles, Anderson, Orun, Gibson, Solomon, Via, 

Bowman (2023). 

Thus, this is a contra-predictive pattern. Indeed, even though they are highly unexpected, 

distractors neither attract attention, in fact, they are largely rejected subliminally (Avilés, 

Bowman & Wyble, 2020; Bowman & Avilés, 2021; Bowman, Filetti, Alsufyani, Janssen & Su, 

2014), or generate a substantial evoked response, unlike the (highly predicted) target. This 

data and that presented in the previous subsection “Contra-predictive pattern in Posner 

task" are the sort of data that precision-modulation is required to explain. 

 

Steady State Response 

As discussed earlier, one might think that the evoked response should reduce in amplitude 

very substantially if one continued to present the stimulus. As shown in Figure 7, this could 

be the case (panels [B] and [C]), but it does not have to be (panel [A]). In fact, evoked 

responses to long trains of repeating stimuli have been extensively explored. A typical 

pattern of data is shown in figure 9, where the onset of the stream of stimuli generates a 

transient response, which might be related to a prediction error. However, after a number 

of repetitions, the evoked response settles into a relatively stable oscillation at the 

frequency of the visual stimulation, which has an amplitude not much lower than the 

evoked (onset) transient. In particular, there is little evidence of substantial attenuation of 

the response. Thus, the data looks more like figure 7[A] than figure 7[B or C]. 
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Figure 9: steady state visually evoked potential from (Garcia-Molina & Milanowski, 2011). A 

visual stimulus was repeated at 15 Hz. 

Shared-channel noise versus attention prediction 

Interestingly, there is a literature focused on the impact of noise on higher cognition, e.g. 

Moss et al (2004) and some of this has considered the interplay between sensory noise and 

spatial attention, e.g. Dosher & Lu (2000) and Herweg & Bunzeck (2015). These studies 

could inform our shared-channel noise versus attention behavioural prediction. The most 

relevant study is Dosher & Lu (2000), since they manipulated noise in the same modality as 

attention (Herweg & Bunzeck (2015) added auditory noise to a visual Posner task).  

One might believe that the more direct test of the shared-channel noise vs attention 

prediction would be when noise is applied in the same modality in which attention is 

manipulated. Dosher & Lu (2000) employed a form of Posner task that tested the effect of 

overlaid visual noise on an orientation judgement task. We reproduce their key finding in 

our Figure 10. 

They observed a pattern consistent with our prediction, with a strong attentional effect with 

high sensory noise, but no attentional effect in the absence of sensory noise (in fact, this no-
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sensory noise condition exhibited a strong ceiling effect; see our Figure 10 and also Figure 2 

in Dosher & Lu (2000)). Remember, our prediction was that, if attention and levels of 

sensory noise share the same channel (i.e. precision), the effect of attention should increase 

as sensory noise increases (i.e. induced precision reduces), since the resulting greater 

distance to ceiling, would give more room for attention to act. 

Dosher & Lu (2000) fitted their perceptual-template model (PTM) to the full data pattern 

and explained the findings in terms of perceptual-template sharpening. A very interesting 

direction for further work would be to formulate a model comparison between the Dosher 

& Lu perceptual-template model and a shared-precision predictive coding model on results 

of their experimental paradigm. 

 

Figure 10: Results from Dosher & Lu (2000) (their figure 3). Data for the four participants are 

shown, one per quadrant. X-axis is the contrast level of the overlaid visual noise, i.e.  noise 
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level increases from left to right. Y-axis shows the contrast of the (signal) stimuli, i.e. 

stimulus strength increases from bottom to top. Data points are level of stimulus contrast at 

which 62.5% performance accuracy is obtained for a particular noise level. Thus, a data point 

higher on the y-axis indicates worse performance, i.e. that a stronger stimulus was required 

to obtain the 62.5% performance level, for a given level of noise. In all quadrants, the higher 

curve (squares) is for invalid cuing (i.e. unattended) and the lower curve (circles) is for valid 

cuing (i.e. attended). This, then, is the same pattern as our interaction prediction (figure 

8[B]), but with y-axis reversed, since stimulus strength required to reach a performance 

threshold is plotted (i.e. lower is better performance). That is, we observe a large effect of 

attention when sensory noise is high and a small effect when noise is low. 

Finally, although not explicitly prediction experiments, there has been neuroimaging work 

crossing manipulation of sensory noise (clear speech versus noise vocoded) and attention 

(dichotic listening) (Wild, Yusuf, Wilson, Peelle, Davis & Johnsrude, 2012; Rimmele, 

Golumbic, Schröger & Poeppel, 2015). Adding a prediction component to these paradigms 

could be a fruitful direction for research. 

2nd-level Prediction Circuit: the Breakthrough-P3 

We focus here on modelling Rapid Serial Visual Presentation (RSVP) and specifically, the 

SSVEP and P3 observed in that context. This follows from Bowman, Filetti, Wyble & Olivers 

(2013a) who highlighted the P3 evoked response in RSVP streams as a contra-predictive 

pattern. Importantly, as previously discussed, the insensitivity to prediction of the P3 in 

RSVP should be distinguished from that classically observed for the odd-ball P3 (Donchin & 

Coles, 1988), which exhibits a pattern of data that is much more predictive in nature. Thus, 

what follows is only intended to obtain for the Breakthrough-P3. Additionally, what we 

present is not in any sense, a complete treatment of the Breakthrough-P3, rather our 

interest here is to show specific data patterns by building on top of the predictive coding 

framework. 

Reasons for focusing on the Breakthrough-P3 are as follows. 1) It is a classic example of a 

breakthrough (into consciousness) component, which we have argued earlier may reflect a 

situation in which predictive coding is not strongly at play. In RSVP search experiments, 

participants look for and find the same target in very many trials, thus the target stimulus 
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becomes highly predictable. Nonetheless, contrary to a vanilla predictive pattern, the target 

elicits a very high amplitude evoked response. Additionally, Wierda, Taatgen, van Rijn & 

Martens (2013) found little evidence of an effect of (pre-experimental) word-frequency on 

the evoked response during an (RSVP) attentional blink experiment. 2) It may be that there 

is more “room” to observe precision/gain bringing the component earlier in time with the 

P3, rather than the N1/P1 (the components we have focussed on so far in this paper), 

which, as early components, are closer in latency to the physiologically minimum possible 

latency (thus, if such a latency decrease is not observed, it may represent a more compelling 

finding for the P3, since there was considerable “room”/potential for it to be observed). 3) 

For the P3, a model exists that proposes an additive effect of attention, viz the blaster 

response in the Simultaneous Type/ Serial Token model (Bowman & Wyble, 2007). This 

model has credence because of the spectrum of effects it successfully simulates, giving the 

additive ensemble hypothesis credibility in the context of the Breakthrough-P3 (e.g. 

Bowman & Wyble, 2007; Bowman, Wyble,  Chennu & Craston, 2008) including modelling of 

the P3 (e.g. Chennu, Craston,  Wyble & Bowman, 2009; Craston, Wyble, Chennu, & 

Bowman, 2009). 

Here, then, we take the Predictive Coding-Evoked (PC-Evoked) model and simulate RSVP, the 

Breakthrough-P3, as well as the SSVEP, in what we call the Hierarchical-PC-Evoked model. 

We relate this revised model to Rao & Ballard’s classic model under inline heading 

Hierarchical Model of Appendix 1: Further Justification of PC-Evoked model. 

We perform two sets of simulations with the Hierarchical-PC-Evoked model. 

Early Circuit Simulations 

We make the following changes to the simple PC-Evoked model, focussed on up to this 

point in this paper. 

1) We repeat the prediction circuits, since there are many distractors, giving us one per 

distractor or target. These all have absent precision, since it is not manipulated in the 

early circuit in these simulations. The RSVP SSVEP arises from these early circuits. 

2) The target is presented more often than the distractors, but only ever across 

streams. We model this by having relatively small time-constants at early circuit 
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prediction units, enabling residual activation (in prediction units) in different circuits 

to build-up and last across RSVP streams. 

Thus, these simulations reflect vanilla predictive coding in the early circuit, i.e. without any 

difference in precision between distractors and targets. 

Our main finding is that once prediction has built-up across streams, the model generates a 

weaker response for the target, which is suppressed by residual prediction from earlier 

presentations in previous streams; see figure 11. Thus, this suggests that, assuming 

relatively long prediction dynamics, vanilla predictive coding, generates reductions in 

amplitudes of targets in SSVEPs once expectations have accumulated sufficiently. We are 

not aware of any reports of such a phenomenon in RSVP experiments, although of course, 

this may be because the effect is small and nobody has determinedly looked for it. This is a 

good focus for future work. 

 

Figure 11: Early Circuit response to RSVP stimulation (see Simulation 6 in Appendix 5). Two 

RSVP streams (each of 15 items) are presented in succession to the model. Since an 

expectation carries over from the first stream to the second, the amplitude of the target is 
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reduced in the second stream; see red arrow. This is because distractors are not repeated 

across streams, but the target is. 

 

Figure 12: Hierarchical PC-Evoked models. A late circuit is added to the (early) circuit of the 

basic PC-Evoked model. We only depict the Stimulus 1 part of the full model. The basic Late 

circuit has the same general form as the Early circuit, apart from the addition of a task 

demand system (solid grey node), which backgrounds Distractors, preventing them from 

being able to generate activation in the Late circuit. We show two versions of this model. [A] 

(version 1, gain control) mirrors the early precision pathway, with a late precision pathway. 

[B] (version 2, additive enhancement), taking inspiration from the blaster in the STST model, 

a transient attentional enhancement mechanism is implemented, which amplifies on 

detection of a salient (e.g. task-relevant, emotionally salient, personally salient) stimulus. 

This mechanism is realised with a separate pathway from the stimulus, which is assumed to 

be more like a traditional recognition system that is seeking to detect stimuli that are salient 

to the organism. 

Late Circuit Simulations 

As previously discussed, see Figure 8[C], the really big response in RSVP experiments is the 

P3 for targets. This is even though, as just emphasized, targets are more expected than 
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distractors, which only elicit a single deflection in the (low amplitude) SSVEP and no P3 at 

all. To explore such (contra-predictive) P3s, we add a late circuit to our model; see figure 12. 

Specifically, we make the following changes to our model: 

1) We add later higher level circuits, one for each distractor and target, but where task 

set ensures that only targets become active. Specifically, the inhibitory link from the 

task demand unit shown in figure 12 (see grey dashed arrow) is set to 0.13 for 

distractors and zero for targets. This blocks activation from passing into the Late 

circuit for Distractors, on the grounds that Distractors are not being “searched for” 

by participants. 

2) Version 1 (gain-control): our first version of the high-level circuit (see figure 12[A]), 

reflects that modulation by precision works similarly for this second level response 

as it does at the first level (N1/P1).  We show this by changing precision (late 

precision in figure 12[A]) in this higher-level circuit in a similar way to our 

manipulation of the N1/P1. 

3) Version 2 (additive ensemble): as a reflection of the additive ensemble theory (see 

inline heading “Evoked response” of the Methods section), we import a simplified 

version of the transient attentional enhancement (the blaster) introduced in the 

Simultaneous Type/ Serial Token model (Bowman & Wyble, 2007)6, in which the P3 

scales with the level of attention, i.e. blaster firing. This mechanism amplifies on 

detection of a salient (e.g. task-relevant, emotionally salient, personally salient) 

stimulus, being realised with a separate pathway from the stimulus (see figure 

12[B]). This pathway is assumed to be more like a traditional recognition system 

(what we call Brain as Recognizer in the Discussion) that is seeking to detect stimuli 

that are salient to the organism. 

Version 1 of this second simulation shows that the P3 exhibits the same pattern as the 

N1/P1 when precision is titrated; see figure 13[A]. Thus, the large amplitude P3 observed in 

RSVP experiments could be obtained by precision weighting, but this second-level response 

 
6 Although, this did change in the eSTST model, where a multiplicative attentional enhancement was 
implemented (Wyble, Bowman & Nieuwenstein, 2009). 
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(i.e. the P3) changes in the manner suggested by our precision-weighted effects, i.e. as 

precision increases, the response is higher amplitude, higher frequency and earlier. 

Version 2 shows a plausible alternative to a predictive coding explanation of the 

Breakthrough-P3. That is, this component may be generated by an additive attentional 

enhancement, whereby the attentional enhancement increases with stimulus salience, but 

with an additive, rather than multiplicative, effect; see figure 13[B] and compare to figure 6, 

but now, of course, with polarity reversed, since we are considering an initially positive 

going, rather than negative going effect7. 

 

Figure 13: Competing predictions for the Breakthrough-P3 from Hierarchical PC-Evoked 

model. Responses correspond to late evoked response in figure 12. [A] Prediction from 

precision-weighted prediction error theory, in which precision/gain (𝜋𝐸) is modulated by 

stimulus salience/engagement of attention, low precision was 0 and high precision was 0.54 

(see Simulation 6, Appendix 5). As expected, increasing gain, increased amplitude, increased 

component frequency and reduced latency. [B] Prediction from additive (ensemble) 

enhancement theory, where an additive effect of enhancement is obtained (Blaster weight, 

𝑊𝑏𝐵, increased from 0 to 0.02; see Simulation 7, Appendix 5). Note, the change of y-axis 

scales between these two plots. 

Summary of Predictions 

 
7 One could also drive the blaster from the early precision unit and make the P3 bigger when it is expected, 
rather than when it is salient. 
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In summary, three predictions that experimentalists can explore, have been identified from 

this section. 

1) Can one observe a reduction in SSVEP-deflection amplitude once a frequently 

presented stimulus (particularly a target in a classic RSVP experiment) has become 

expected? Vanilla predictive coding suggests this could be present. 

2) Does the high-amplitude P3 observed for targets in RSVP, behave in a fashion 

consistent with precision modulation, i.e. becoming earlier, higher amplitude and 

higher frequency as attentional enhancement increases? This would be consistent 

with precision-modulated predictive coding. 

3) Does this P3 behave according to an additive enhancement, whereby, most 

importantly, the component does not become earlier as attentional enhancement 

increases? This would be inconsistent with precision-modulated predictive coding. 

Further Empirical Evidence: Latency in a Contra-predictive Evoked Response Pattern 

As just illustrated, in order to generate a contra-predictive Breakthrough-P3 evoked 

response pattern, precision needs to be used to elicit the larger amplitude for the 

unpredicted condition. As demonstrated in the Hierarchical PC-evoked model simulations, 

this should reduce the latency of the evoked response. Accordingly, we present an ERP 

approach that is relevant to testing this hypothesis.  

Within the field of psycholinguistics, there is considerable evidence that successful 

comprehension of degraded speech relies on active predictions generated by the listener 

(e.g., Davis et al., 2005; Sohoglu et al., 2012; Wild et al., 2012). Consistent with a vanilla 

predictive coding account, we recently observed a predictive pattern in the magnitude of 

the ERPs elicited by degraded speech at approximately 200-250ms post-stimulus – i.e. more 

extreme values for unexpected stimuli relative to expected stimuli (Banellis et al., 2020). 

However, the subsequent ERP component, between approximately 250-350ms post-

stimulus, exhibited a contra-predictive pattern when participants were actively attending to 

the speech stimuli – i.e. more extreme values for expected stimuli relative to unexpected. 

Furthermore, when participants were distracted from the speech stimuli, the ERPs in that 

same time-window maintained the earlier predictive pattern.  
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As in the RSVP data above, to explain this contra-predictive pattern within a prediction error 

framework, one must appeal to precision-modulation. As detailed above, such differential 

precision-modulation will also affect the latencies of the ERP components, with a shortening 

of component latency under high precision. Nevertheless, in Banellis et al. (2020), we found 

no evidence of an interaction between prediction and attention for the latency of this 

contra-predictive ERP component (nor any other component). Furthermore, using Bayesian 

equivalent analyses, the latencies of the ERP components were between approximately 2- 

and 4-times more likely under a model containing no interaction term – a result that is 

inconsistent with a role for precision-modulation in this contra-predictive ERP. 

We acknowledge that the above Bayes Factors, while in the direction of the null, are 

relatively small. Furthermore, our original experiment was not designed to explicitly test for 

latency effects. However, incorporating manipulations of prediction and attention alongside 

Bayesian analyses in this way is one possible principled means for future targeted efforts to 

falsify a precision-modulated prediction error characterisation of ERP components. 

 

Discussion 

Falsifiability vs falsification 

It is important to differentiate unfalsifiability from failure to falsify. A theory is unfalsifiable 

if there is no experiment that could be run that could come out in a way that stands against 

it, meaning that the theory is tautological. In contrast, a failure to falsify a theory, simply 

means that no experiment has been run (to date) that provides evidence against it, but this 

does not mean that no experiment exists that could falsify the theory. In particular, a failure 

to falsify does not imply unfalsifiability, and falsifiability does not imply falsification. That is, 

the fact that a theory is falsifiable does not mean that it will be falsified. Taking Physics as an 

example: there are many theories that have not been falsified, but this does not mean that 

they were tautological (i.e. unfalsifiable), it just means that attempts to falsify them failed. 

Take the laws of thermodynamics as examples (Cengel, Boles & Kanoğlu, 2011). If 

experiments had come out differently, they could have been falsified. Thus, the laws of 

thermodynamics have not been falsified, but they are falsifiable. 
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The issue with predictive coding with precision-modulation and a purely amplitude-oriented 

means of discriminating evoked responses is that it really does risk becoming unfalsifiable. 

That is, it can generate both predictive and contra-predictive patterns, raising the possibility 

that no empirical scientist can inform the correctness of the theory, i.e. there is no point in 

running experiments to test the theory. 

Bayesian Approaches 

The main focus of this paper is to identify properties that can qualitatively differentiate 

theories, i.e. properties that one theory can exhibit, but the other cannot (for any setting of 

its parameters). However, two models that can both generate the observed data can be 

differentiated using Bayesian techniques, by considering how likely the data is given the 

range of possible parameter settings of each model. This is certainly a strategy that could be 

employed to assess the validity of predictive coding. For example, one could pit the additive 

ensemble theory of contra-predictive evoked responses (i.e. higher amplitude responses to 

expected stimuli), against the PC-evoked model in a Bayesian model comparison. 

However, while Bayesian approaches could be used to quantify differences between 

theories, if qualitative predictions are available then they are the most useful to 

experimentalists, providing the strictest, most incontrovertible, falsification. Accordingly, 

ways to qualitatively differentiate between theories is our main focus in this paper. 

Latency, frequency-domain features and precision-modulation 

The modelling in this paper can be considered scientifically positive, since it more strongly 

constrains the claims made by predictive coding with precision-modulation, providing a 

target for empirical scientists. If the latency of evoked responses is considered in addition to 

amplitude, an experimentalist can find evidence against predictive coding. This would occur 

if a standard condition having a larger amplitude than a deviant condition (i.e. a contra-

predictive pattern) is not associated with a shorter latency. There may be the necessity to 

find evidence for the null, but Bayes can be used for that (Dienes, 2014). 

In fact, since precision is a gain parameter, as demonstrated in figures 4, 5 and 6, obtaining a 

contra-predictive pattern from predictive coding, implies a change in form of the evoked 

response. These characteristics might be most easily observed in the frequency domain (see 
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figure 5), where the frequency of the evoked transients increases as precision/ gain is 

increased. 

These frequency domain features are focused on the evoked response. However, even 

though the PC-evoked model cannot inform such features, one can also make an argument 

about induced-responses in the frequency domain, since also in this case, increased 

precision should move power to higher frequencies. This is essentially because increasing 

effective time-constants in an oscillator, would cause the (oscillator) circuit to be traversed 

more quickly, increasing its intrinsic frequency.  

These kinds of changes of timing and frequency dynamics can be investigated with Dynamic 

Causal Modelling (Kiebel, Garrido, Moran & Friston, 2008). In particular, self-loops in DCM 

micro-circuit models really act as gains on neural responses. Thus, fitting DCM micro-circuit 

models to experimental manipulations of deviance and interrogating the strength of self-

loops, offers one approach to testing the amplitude and latency claims of precision-

weighted predictive coding. (Additionally, Bastos, Usrey, Adams, Mangun, Fries & Friston 

(2012) present a Canonical MicroCircuit (CMC) model that realises predictive coding 

concepts in a neurophysiologically detailed mannner, including with a realisation of 

precision. Changes of timing and frequency dynamics could also be explored with this CMC 

model.) 

Confidence, Attention and the Predicted 

Does precision become an overloaded concept in precision-weighted Predictive Coding? We 

highlighted three different flavours by which precision may enter the theory. 

1) Confidence. This is the root definition of precision. Consider, for example, the 

equations of Rao and Ballard (Rao & Ballard, 1999), a highly influential, formulation 

of the framework. Precision terms (reciprocal of standard deviation) appear in these 

equations, which at the sensory level reflect the noise in the sensory input, and thus 

the confidence that the system has in the prediction errors it will pass up the sensory 

pathway. Thus, for example, high precision (i.e. low variance) will correspond to high 

certainty and thus, to high confidence. This link between precision, certainty and 

confidence has been frequently made in the literature, e.g. Clark (2015), Allen et al. 

(2016), Spence et al. (2016) and Boldt et al. (2017).  
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2) Attentional control: Friston has argued that attentional signals can be realised in 

predictive coding using precision modulation (Friston & Feldman, 2010). This 

position associates attentional control with modulation of gain, e.g. if attended, the 

gain at a particular position in space is increased. 

3) Predicted: more speculatively, as a by-product of the association of attention with 

precision, is there a sense to which precision comes to be positively correlated with 

prediction, i.e. it increases when a signal is expected and decreases when it is not?  

Considering these three flavours of precision, the first seems uncontroversial: prediction 

error uncertainty arising due to noise needs to be reflected in the model. However, there 

may be more to discuss about the other two. 

Attentional Control: Firstly, while precision as attentional gain is a theoretically elegant 

approach, it does not fully answer the question of the mechanics by which the brain 

engages in top-down (and bottom-up) attentional control, and perhaps particularly the 

implementation of feature-based attention (Bowman et al, 2013; Ranson & Fazelpour, 2015; 

Ransom, Fazelpour & Mole, 2017; Ranson & Fazelpour, 2020). Indeed, many attention 

researchers would agree that attention can modulate the sensory pathway with gain control 

(see, for example, Experience-Guided Search (Mozer & Baldwin, 2007); the blaster in the 

eSTST model (Wyble, et al, 2009) (although, as previously discussed, STST employed an 

additive enhancement (Bowman & Wyble, 2007; Bowman et al, 2008)); the FeatureGate 

model (Cave, 1999); etc), but the further question is the overall architecture and associated 

“wiring” by which it does this, proposals for which have been made in a range of 

computationally instantiated models, e.g. RAGNAROC (Wyble et al, 2020); STST (Bowman & 

Wyble, 2007; Wyble et al, 2009; Bowman et al, 2008); Saliency-map model (Itti, Koch & 

Niebur, 1998; Itti & Koch, 2000); Experience-Guided Search (Mozer & Baldwin, 2007); and 

Neural Theory of Attention (Bundesen, Habekost & Kyllingsbæk, 2005). 

Moreover, in and of itself, a finding that attention does act as gain control is certainly 

required for the precision-weighted prediction error theory to be supported, but it would 

not definitively verify it. This is because, as just highlighted, there are many extant theories 

that predict the same (i.e. attention as gain-control), without being predictive in nature. So, 

it would be an important demonstration for predictive coding, but it would not be 
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conclusive. In contrast, identification of a non-gain pattern would stand against predictive 

coding. 

Neuromodulatory mechanisms are also candidates for adjusting precision in order to realise 

attentional control. For example, Friston and co-workers have proposed that dopamine 

might play this role (Friston et al, 2012; Friston et al, 2014); see also (Dayan & Yu, 2002; 

Dayan & Yu, 2005) for proposals concerning neuromodulators and uncertainty. 

Secondly, is it a problem that precision represents both attention and confidence? The link 

between confidence and attention seems to be strong in Cueing experiments (Feldman & 

Friston, 2010). That is, the cue typically directs attention to a spatial location, and if a 

stimulus appears there, confidence as to whether a prediction error has occurred is indeed 

likely to be high, since the stimulus falls in the focus of (previously cued) covert attention. 

However, there certainly are situations in which we can attend to low-confidence stimuli. 

For example, in some situations when driving, we may monitor the pavement for 

pedestrians crossing the road, a region that would (let’s hope) be in the periphery of our 

vision. Thus, presumably, attention will be pushing up our effective confidence in prediction 

errors in a circumstance in which we would actually have low confidence (since the 

pavement is in our periphery). If the two concepts were conflated, would it be possible to 

attend and also have low-confidence about the attended stimulus? 

Indeed, by requiring them to use, if you like, the same “channel”, is there a sense to which 

the “attention as confidence” hypothesis loses valuable information by conflating the two, 

preventing them from being differentiable? For example, at a higher level of the sensory 

processing hierarchy, the system may register a very large precision-weighted prediction 

error, but it would not know what had caused that large amplitude – was it that there was 

high confidence in sensory inputs, but low attention, or was it that there was low 

confidence, but high attention? In fact, since the precision-weighted prediction error is a 

single number, it could actually also be that there was an extremely high prediction error, 

but low confidence and low attention. 

Predicted: The third flavour of precision-modulation is perhaps the most serious with regard 

to unfalsifiability.  In many experiments, attention is assumed to be engaged by presenting a 

stimulus frequently, i.e. making it expected, with cuing tasks a classic example. For example, 
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in the basic Posner task (Posner, Nissen & Ogden, 1978; Posner, 1980), the Valid cue is 

presented more frequently than the Invalid cue, see also, (Garner, Bowman & Raymond, 

2021) and many others. Thus, in this context, we attend to what is expected, and it 

generates the largest evoked response8, even if there is no direct instruction to attention 

(which might be argued to directly regulate precision). At the least, this position does not sit 

well with vanilla predictive coding, in which the largest evoked response is to the 

unexpected stimulus. Indeed, resolving this inconsistency may have been a motivator for 

the attention as precision association (Feldman & Friston, 2010). 

Thus, might it be that it is not just confidence and attention that become conflated in 

precision-modulation, but it is also the expected. If high precision becomes high 

expectation, then prediction enters the model in two different ways – additively 

(subtraction) with top-down prediction and multiplicatively with precision, and in typical 

cases, these would work in opposition to each other. 

This seems particularly problematic, since it implies that precision-modulated prediction 

errors really can be largest for unexpected stimuli in one setting and for expected stimuli in 

another. It is simply the amount that precision is titrated that determines whether the 

theory will generate predictive or contra-predictive evoked patterns. 

Implications: the overloaded nature of precision should be an issue that experimentation 

can inform, for example, suggesting experiments that would compare the effect of 

manipulating sensory noise and attention on behaviour and/ or evoked responses. A 

number of potential experiments of this kind were highlighted in subsections “Sensory 

Noise vs Attention” and “Counter-intuitive Prediction” of the “Informal Predictions of 

Contra-predictive Pattern” section of the results. In addition to these, attention as precision-

modulation of prediction error seems to suggest that low confidence-high attention cannot 

be distinguished from high confidence-low attention. 

 
8 As an illustration of this point, Hohwy 2012 says: “without attention, the better a stimulus is predicted the 
more attenuated its associated signal should be. Attention should reverse this attenuation because it 
strengthens the prediction error. However, attention depends on the predictability of the stimulus: there 
should be no strong expectation that an unpredicted stimulus is going to be precise. So there should be less 
attention-induced enhancement of the prediction error for unpredicted stimuli than for better predicted 
stimuli.” 
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As highlighted recently (Litwin & Miłkowski, 2020), precision is operationalised in many 

different ways across the prediction error literature, including being synonymous with 

attention, subjective feelings of confidence, and salience, thus allowing all predictive and 

contra-predictive results to be interpreted within the predictive coding framework. 

Consequently, the field will benefit from both clear computational models of the 

implications of precision-modulation, and from testable characterisations of the conditions 

under which precision will vary. 

Is the Brain a Recognizer or a Predictor? 

What though is the theory of brain function that predictive coding can be placed in 

opposition to? The fundamental debate is really between the Brain as a Recognizer and the 

Brain as a Predictor. The recognition system perspective might be considered the dominant 

theory of cognitivism (Haugeland, 1978; Lindsay & Norman, 2013; Mandler, 2002), which 

although still prominent, may, in some circles, be considered “on the back foot” because of 

the pervasiveness of predictive coding. 

Notwithstanding the implications that we have discussed of precision-modulation, a central 

principle, as we have said, of (vanilla) predictive coding is that large evoked responses 

correspond to large prediction errors. This is in contrast to the recognition system 

perspective that the brain is trying to recognise the stimuli in the environment that fall onto 

sensory receptors, where the evoked response would reflect this recognition process. 

Importantly, recognition could simply be a feedforward process, i.e. whenever a stimulus is 

presented to the brain, the representation of the stimulus propagates forward along the 

sensory processing pathway in order to determine what the stimulus being viewed is. 

Furthermore, from this perspective, the evoked response tracks this forward propagation, 

and is generated whether that stimulus is predicted or not. 

This recognition system perspective fits well with the mainstream of connectionism, neural 

networks and deep learning. For example, the brain’s (putative) recognition system can be 

seen as solving a similar problem to deep learning systems that are categorising objects in 

images on the internet, e.g. (Ciresan, Meier, Masci, Gambardella & Schmidhuber, 2011). 

There are actually versions of the Brain as Recognizer perspective that go beyond pure 

feedforward models, with a key example being Adaptive Resonance Theory (ART) 
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(Carpenter & Grossberg, 2010). ART suggests that a large evoked response should be seen 

on a match (to a learnt pattern), which has some similarities to what we have called a 

contra-predictive pattern, while vanilla Predictive Coding suggests that a predictive evoked 

response pattern should be observed. Vanilla Predictive Coding resonates on mismatch, 

while Adaptive Resonance Theory resonates on match.  

There has also been work suggesting a link between purely feedforward neural networks 

trained to perform recognition/ categorisation tasks and the brain’s sensory processing 

pathways. For example, Khaligh-Razavi and Kriegeskorte (2014) provided evidence that a 

deep convolution neural network trained to perform recognition/ categorisation, constructs 

similar representations to those that can be observed in the ventral stream in the brain 

(although Kietzmann, Spoerer, Sörensen, Cichy, Hauk & Kriegeskorte (2019) argue that the 

addition of recurrent connections does improve the model fit). This work raises the 

possibility that the “good-old fashioned” recognition-based perspective may explain, at the 

least, a part of the computation performed by the visual processing pathway, or, in other 

words, predictive coding is not computationally the “only game in town”. 

From a broader theoretical perspective, the recognition versus prediction debate in many 

respects revisits the famous dispute in perception research between Gibson’s direct 

perception (Gibson, 2002) and Gregory’s constructivist perception (Gregory, 1970; Gregory, 

1997); see also (Norman, 2002). Direct perception, as associated with ecological psychology, 

emphasised the need for the world to be veridically experienced, in order that it can be 

acted upon; thus, from this perspective, experience is not constructed, top down, it is 

specified bottom-up (Warren, 2021)9. In contrast, constructivist perception argued for top-

down shaping of experience on the basis of expectation. Thus, there is a sense to which the 

Brain as Recognizer fits with the Gibsonian position, while the Brain as Predictor fits with the 

Gregorian position. Additionally, could the Gibsonian critique also be applied to the 

 
9 Indeed, the success of modern (purely feedforward) machine learning seems to sit well with Gibson’s basic 
point that there is sufficient information in the world to support perception. Well, at the least, it suggests that 
there is sufficient information in 2d-images to classify without prior prediction, with the necessary information 
extracted through (bottom-up) statistical learning. 
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constructivist perspective that is also inherent to predictive coding, i.e. that it does not sit 

well with our capacity to act in the world?10 

Furthermore, it is notable that the direct vs constructivist debate in perception ran and ran, 

without a definitive winner, suggesting that neither theory is in an absolute sense complete. 

Should we expect the same with regard to the Brain as Recognizer vs Brain as Predictor 

debate? 

Perhaps the key point that this discussion of the Brain as Recognizer and as Predictor 

highlights is that from a philosophical/ theoretical perspective, there really are competing 

explanations of human perception. The existence of such alternatives does not sit well with 

the notion that one of these perspectives is unfalsifiable. In fact, there need to be a range of 

experimental claims that differentiate recognition from predictive theories and enable the 

relative contribution of the two to be assessed in empirical work. 

Tractability and the Localist vs Distributed Debate 

The long running debate in connectionist research concerning whether the brain uses 

localist or distributed codes (O’Reilly & Munakata, 2000) informs how predictive coding 

might be implemented; see also appendix 4 for a discussion of the implications of the choice 

of learning algorithm. In localist models, neurons are narrowly tuned to a unique concept 

(see Page (2000) for a more nuanced definition of localist representations). In contrast, with 

distributed representations, neurons are broadly tuned.  

Predictive coding theories are often formulated within a localist neural network framework. 

In particular, predictions need to be directed to the relevant prediction error units, e.g. 

stimulus one in figure 1, and it is more difficult to do this fully generally with a distributed 

representation (although there are continuing developments in variational autoencoders 

and generative neural network models Doersch  (2016)). 

 
10 Interestingly, Friston’s more recent computational theory of brain function – Active Inference (Friston, 
Mattout & Kilner, 2011) – tackles this question “head on”, by combining the capacity to act in the world (the 
Act in Active Inference, i.e. the Gibsonian perspective) with perception, indeed cognition, as inference (the 
Inference in Active Inference, i.e. the Helmholtz, Gregory perspective). In this sense, Active Inference may 
provide a key computational framework by which resolution of the constructivist vs direct perception debate 
can be explored. 
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There are strong arguments as to why localist representations would be found in the brain 

(Page, 2000; Bowers, 2009), however, localist representations do not scale as well as 

distributed representations. For example, with localist representations, a new neuron is 

required for every new concept being represented, while N neurons can represent many 

more than N concepts with distributed representations (Rolls & Treves, 1998). Additionally, 

modern deep learning is typically focused on distributed representations. 

This raises the possibility of a trade-off between the predictor and recogniser hypotheses. 

Predictive coding/ Bayesian generative models enable perception as inference and are 

information-theoretically efficient, but the question is does the approach scale? However, 

the recognizer perspective, as instantiated in feed forward neural networks, including deep 

ones, does scale and demonstrably so. Is there an argument here for why the brain has both 

prediction and recognition? 

This question of localist versus distributed representation and its relevance to the main 

predictive coding theories in cognitive neuroscience, could be explored experimentally by 

recording and analysing neural responses in non-human animals, e.g. Fusi, Miller & Rigotti 

(2016), as well as in humans, with implanted electrodes, e.g. Engel, Moll, Fried & Ojemann 

(2005). This work could focus on relevant laminar in brain areas where a link has been made 

to components of predictive coding, e.g. see Bastos, Usrey, Adams, Mangun, Fries & Friston 

(2012), and could explore how broadly tuned units are in those areas. As evidence that such 

a procedure is feasible, in different brain regions, experimentalists have found evidence for 

both distributed (mixed selectivity) units (Rigotti, Barak, Warden, Wang, Daw, Miller, & Fusi, 

2013) and sparser more representation-invariant units (Quiroga, Reddy, Kreiman, Koch & 

Fried,  2005), suggestive of more localist representations.  

Conscious Breakthrough  

A number of the examples of contra-predictive evoked response patterns that we have 

identified have been conscious break-through effects, where stimuli are presented on the 

fringe of awareness (Bowman et al, 2013 & 2014; Bowman, Filetti, Wyble & Olivers, 2013a; 

Banellis, Sokoliuk, Wild, Bowman & Cruse, 2020). Could conscious break-through be a 

phenomenon that fits particularly badly with (certainly vanilla) predictive coding? That is, 

expecting that a salient stimulus will be presented, either as a result of instruction or the 
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contingencies of prior presentations, may be critical to enabling detection of that stimulus 

and evoked response generation. Importantly, detection and ensuing perception of salient 

stimuli is exceptionally challenging in this context, since the brain is trying to locate those 

stimuli from amongst a demanding background of high noise or attention-grabbing 

distractor onsets. 

A salient stimulus being expected enables the perceptual system to set-up a template 

(broadly construed) to “look for” in the demanding presentation, and particularly focus on 

seeing matches for that template (see Meijs, Slagter, de Lange & van Gaal (2018) for 

behavioural evidence for this). This might be the optimal strategy in these demanding 

detection and identification environments. Indeed, as noted in sections “The P3 in Rapid 

Serial Visual Presentation (RSVP)” and “2nd-level Prediction Circuit: the Breakthrough-P3”, 

in RSVP, the stimuli that are most unexpected are the distractor fillers, which typically occur 

very infrequently in the experiment. Thus, as we have discussed, from a predictive coding 

perspective, distractors should generate the largest prediction errors and would carry the 

most information. Distractors do contribute to the Steady State Visual Evoked Potential 

(SSVEP) (see, figure 8[C]), but do not elicit an evoked response beyond early visual 

processing areas of the brain, however, “expected” salient stimuli generate large (P3) 

responses, see figure 8[C]. 

Finally, our modelling in section 2nd-level Prediction Circuit: the Breakthrough-P3 can 

motivate experiments that look at the characteristics of how the Breakthrough-P3 changes 

its features (amplitude, latency and frequency) in response to manipulation of target 

stimulus salience and target predictability. Such experiments could specifically focus on 

whether precision-weighted (see figure 13[A]) or additive enhancement (see figure 13[B]) 

P3 patterns are obtained. 

Looking forward 

Consistent with the central argument of this paper, we need to know whether contra-

predictive evoked response patterns, which are certainly present in the literature, involve a 

latency decrease and an increase in maximum frequency. This will tell us whether precision-

modulation could generate the pattern. 



48 
 

Phase-resets: The PC-evoked model and the extant modelling in predictive coding is typically 

focussed on amplitude-change evoked responses. In such responses, a new set of neurons 

are driven to become active or, at least, to become more active, in response to a stimulus 

onset, i.e. where there would be a clear power increase associated with the evoked 

response. However, there is also considerable evidence that stimulus-driven transients can 

also arise from phase-reset patterns, e.g. Makeig et al (2002), i.e. simply because the phase 

of an on-going oscillation is reset by the stimulus onset, but without a power increase. 

There are a number of neural models that generate phase-reset patterns in response to a 

stimulus onset, e.g. Parish et al (2021). However, further work is required to see how the 

PC-evoked model could be extended with phase-reset dynamics to obtain a classic reset 

data pattern for prediction errors, and thereby, to see whether phase reset dynamics can be 

reconciled with predictive coding. 

Other Neuroscience Methods: Predictive coding comes with some quite strong claims 

concerning neurophysiological components of the theory, e.g. Kanai et al (2015). These 

could be used in intracranial recordings to inform some of the questions considered in this 

paper. For example, the central question of whether latencies shorten in situations in which 

evoked responses increase in amplitude, could be explored by recording from pyramidal 

cells. The latency of the response of superficial pyramidal cells, which are claimed to carry 

prediction errors, is of particular interest, while deep pyramidal cells should carry sustained 

predictions, indicating whether a stimulus is expected in the current context. More 

speculatively, considering the visual processing pathway, one may be able to obtain an 

indication of the current level of top-down precision from a structure such as the Pulvinar, 

with these top-down effects likely carried by neuromodulators (Kanai et al, 2015).  

Additionally, elegant fMRI studies have been performed to search for predictive coding 

patterns in the BOLD response, as well as the possible presence of multiplicative gain, i.e. 

precision effects, e.g. Egner et al (2010). However, due to its low temporal resolution, it is 

difficult to see how fMRI could be used to identify the latency change predictions proposed 

in this paper. 

New Deep Learning Approaches: There are now a number of deep learning approaches that 

endeavour to incorporate predictive coding, e.g. Choksi et al. (2021) and Han et al. (2018). 
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For example, Choksi et al. (2021) add predictive coding-like mechanisms to a deep 

convolution neural network (see appendix 1, Further Justification of PC-Evoked model, and 

Figure App 1 for more details), and provide evidence suggesting that the addition leads to a 

deep learning model that is more robust to noise. Very interestingly, these approaches do 

indeed combine Recognition and Prediction, with the former provided by the deep neural 

network and the latter by the augmentation with prediction mechanisms. Additionally, 

Heeger et al (2017) incorporates prediction mechanisms with a recognition neural network, 

with hyper-parameters regulating the extent to which these different functional influences 

dominates. These hybrid models highlight that such combined Recognizer-Predictors may be 

a key direction for future research in computational and cognitive neuroscience. 

 

In the “Results” section, we highlighted a number of predictions that could assess the 

validity of predictive coding. This offers the possibility that one could constrain the theory 

from many experiments. If model fitting is used to do this, it is important not just to fit 

models separately to the results of each experiment, but to fit a single model across many 

experiments, essentially reducing “wiggle room” and constraining the parameter space for 

model fits. 

Finally, the possibility that the brain is both a Recognizer and a Predictor needs to be 

embraced. This raises important theoretical questions about how these two theoretical 

frameworks could function together, i.e. how could a feedforward Brain as Recognizer be 

integrated with a generative Brain as Predictor, with emerging deep learning models 

providing initial steps in this direction? 

Conclusion 

Predictive coding is one of the most important and well attested theories in neuroscience, 

and there is no doubt that it is a substantial part of the story of brain processing, but the 

question is, is it the whole story? That is, our point is not that predictive coding is wrong, but 

rather, we raise the question of whether it is a complete explanation. However, to test this 

completeness, one requires properties that predictive coding does not imply. These are 

what we have sought to identify in this paper. 



50 
 

 

Acknowledgements 

We would like to thank Karl Friston for many fruitful discussions concerning predictive 

coding. We would also like to thank two anonymous referees for very useful comments and 

suggestions, which have greatly improved this paper. 

 

Appendices 

Appendix 1: Further Justification of PC-Evoked model 

Evoked Response as Prediction Error: In our first model, we are interested in the first evoked 

transient following the onset of a stimulus. Thus, the analogue in Rao and Ballard’s model of 

our evoked transient is the first feed forward prediction error (which computes 𝐼 − 𝑓(𝑈𝒓)); 

see figures App 1[B] and App 2 (annotation PErr). 𝑓(𝑈𝒓)) is the prediction and is not 

changing in this first response, since activation (i.e. prediction errors) need to propagate 

upwards first before (feedback) predictions can change. 𝐼 is the sensory input, 𝑈 a weight 

matrix and 𝒓 are the causes/prediction. We see a similar configuration in Kanai et al (2015); 

see figure App 1[A], although the orientation of the circuits depiction has changed and a 

top-down precision pathway has been added. 
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Figure App 1: Comparison of predictive coding models. [A] Friston et al predictive coding 

model, showing a part of figure 2 from Kanai et al (2015). [B] Rao and Ballard predictive 

coding model, showing a part of figure 1 from Rao and Ballard (1999). [C] Deep convolution 

predictive coding model, showing figure 1 from Choksi et al (2021). Importantly, [C] contains 

feedforward recognition links (green arrows), while [A & B] do not; see blue cross in each  

panel, showing where the recognition link is or would be, if it were present, for the first stage 

of each model. In [A & B], the only feedforward links are prediction errors. 

We reproduce in figure App 1[C] a recent, deep learning model incorporating predictive 

coding by Choksi et al (2021); see inline heading New Deep Learning Approaches in the 

Looking forward section of the Discussion. In an excellent appendix, Choksi et al (2021) 

compare their equations directly to those of Rao and Ballard, and identify a difference 

between their model and Rao and Ballard’s in terms of the feedforward sweep, stating, 

“Equation 23 [of Choksi et al] also highlights the fact that our approach has an extra 

feedforward term that is not present in the original Rao and Ballard proposal. We believe 

that such a modification allows for rethinking the role of error-correction in network 

dynamics; where error-correction constituted the predominant mode of feed-forward 

communication in the Rao and Ballard implementation, it plays a more supporting role in 

our implementation, iteratively correcting the errors made by the feedforward 

convolutional layers.” 

This makes clear an important trend in the emerging deep learning literature on predictive 

coding: their models are combining feedforward recognition with feedforward prediction 

errors, to obtain what might be called hybrid approaches. However, as formulated, the PC-

Evoked model only reflects the classic feedforward as prediction error formulation in the 

cognitive neuroscience literature. 

More Detailed Relating to Rao and Ballard Model: Figure App 2 gives a more detailed 

relating of the PC-Evoked model to Rao and Ballard’s predictive coding circuit. The PC-

Evoked model (see figure 1, main body) provides an implementation that is conceptually 

related to the input end of Rao and Ballard's model. Thus, PC-Evoked's Stim1 and Stim2 

prediction are playing the role of Rao and Ballard’s Prediction [𝑓(𝑈𝒓)], PC-Evoked's 𝑠1 and 
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𝑠2 projections correspond to 𝐼 here and the Evoked Response (in PC-Evoked) corresponds to 

PErr here.  

 

Figure App 2: Rao and Ballard predictive coding circuit, showing a part of figure 1 from Rao 

and Ballard (1999). The PC-Evoked model (see figure 1, main body of this paper) provides an 

implementation of the input end of Rao and Ballard's model. Thus, PC-Evoked's Stim1 and 

Stim2 predictions are playing the role of Rao and Ballard’s Prediction [𝑓(𝑈𝒓)], PC-Evoked's s1 

and s2 projections correspond to 𝐼 here and the link labelled Evoked Response (in PC-Evoked) 

corresponds to PErr here. 

Note, the PC-Evoked model cannot be exactly the same as Rao and Ballard’s, since it 

contains shunting dynamics and bio-physiologically more plausible activation dynamics, as 

required to generate evoked responses. However, we would argue that the PC-Evoked 

model has a broad correspondence to the Rao and Ballard model. 

To understand PC-Evoked, it is important to see the analogue of the dynamics of Rao and 

Ballard’s variable 𝒓 (which corresponds to our prediction unit), which changes according to 

the following equation:  

𝑑𝒓

𝑑𝑡
= −

𝑘1

2

𝜕𝐸

𝜕𝒓
=

𝑘1

𝜎2
𝑈𝑇

𝜕𝑓𝑇

𝜕𝑥
(𝑰 − 𝑓(𝑈𝒓)) +

𝑘1

𝜎𝑡𝑑
2

(𝒓𝑡𝑑 − 𝒓) −
𝑘1

2
𝑔′(𝒓) 

where 𝐸 is the objective function, i.e. energy that is being minimised; 𝑘1 is a constant 

update rate; 𝜎2 is the variance of the input; 𝜎𝑡𝑑
2  is the variance of the top-level prediction; 𝑈 

is a weight matrix; 𝑓 is an activation function; 𝒓𝑡𝑑 is the top-level prediction and 𝑔 is the 

negative logarithm of the prior over 𝒓. 
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There are a number of simplifications that would apply to the context of the PC-Evoked 

model. 

1. The activation function (𝑓) is the identity (which has a derivative of 1) in the PC-

Evoked model, i.e. it can be dropped. 

2. Since the PC-Evoked model does not have cross-talk connections (e.g. from the 

Stimulus 1 circuit to the Stimulus 2 circuit) and the weights in one circuit are 

mirrored in the other, 𝑈 = 𝑤. 𝕀, where 𝕀 denotes the identity matrix and 𝑤 is a 

scalar. 

3. 𝒓𝑡𝑑 is assumed to be zero, suggesting that there are no higher-order expectations 

about the category or sequence of stimuli that are most probable. Also, it remains 

zero over the course of a simulation. This reflects the fact that higher-level 

prediction operates on a much longer time-scale. The Rao & Ballard circuit (see 

Figure App 2) is set-up so that with zero input (𝐼) and zero 𝒓𝑡𝑑, it will stabilse with 𝒓 

equal to zero. The leak in the PC-Evoked neurons will ensure the same. 

Consequently, the update equation for 𝒓, 

𝑑𝒓

𝑑𝑡
= −

𝑘1

2

𝜕𝐸

𝜕𝒓
=

𝑘1

𝜎2
𝑈𝑇

𝜕𝑓𝑇

𝜕𝑥
(𝑰 − 𝑓(𝑈𝒓)) +

𝑘1

𝜎𝑡𝑑
2

(𝒓𝑡𝑑 − 𝒓) −
𝑘1

2
𝑔′(𝒓) 

can be simplified to, 

1

𝑘1

𝑑𝒓

𝑑𝑡
=

1

𝜎2
𝑤(𝑰 − 𝑤. 𝒓) −

𝒓

𝜎𝑡𝑑
2 −

𝑔′(𝒓)

2
 

If we assume a Gaussian prior for 𝒓, then since 𝑔 is a negative logarithm of the prior, 

𝑔’(𝒓) = 2𝛼𝒓, where 𝛼 is a positive constant related to the variance of the Gaussian prior; 

see appendix of Rao and Ballard (1999). This allows us to rewrite our equation to, 

1

𝑘1

𝑑𝒓

𝑑𝑡
=

1

𝜎2
𝑤(𝑰 − 𝑤. 𝒓) −

𝒓

𝜎𝑡𝑑
2 −

2𝛼𝒓

2
 

=
1

𝜎2
𝑤(𝑰 − 𝑤. 𝒓) − (

1

𝜎𝑡𝑑
2 + 𝛼)𝒓 
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If we make the reasonable assumption that 𝜎𝑡𝑑
2  is constant then we can see that the term 

−(
1

𝜎𝑡𝑑
2 + 𝛼)𝒓 is just a decay term, which we can write as −𝐷𝒓, with 𝐷 a positive constant. 

Thus, we have, 

1

𝑘1

𝑑𝒓

𝑑𝑡
=

1

𝜎2
𝑤(𝑰 − 𝑤. 𝒓) − 𝐷𝒓 =

1

𝜎2
(𝑤𝐼 − 𝑤. 𝑤𝑟) − 𝐷𝒓 

The remaining terms are as follows: 
1

𝜎2 is the multiplicative precision; 𝐼 the input vector, 

corresponding to s1 and s2; and 𝒓 corresponds to Stim1 prediction and Stim2 prediction. The 

decay is subsumed by the leak in the PC-Evoked equations, with 𝐷 being reflected in the 

maximum conductance for the leak channel, 𝐺𝑙.  

(𝑰 − 𝑤. 𝒓) here is the prediction error and it is computed in PC-Evoked’s prediction error 

units, where 𝒓 is reflected by PC-Evoked’s prediction unit. 𝑤(𝑰 − 𝑤. 𝒓) corresponds to 

excitatory input into the prediction unit (see early circuit in figure 12). The implementation 

of prediction in the PC-Evoked model has a consistent form to this update equation for 𝒓.  

Learning: the weights in PC-Evoked are set by hand. Thus, there is no learning and Rao & 

Ballard’s gradient descent adaptation of the weights in 𝑈 is not relevant to our simulations. 

Precision weighted prediction error: Although, Rao & Ballard’s model did not associate 

precision with attention, see Appendix 2: Precision, Gain and Attention for that, they did 

have precision terms that weighted the prediction error. For example, in the following 

formula, 
1

𝜎2
 is a precision and (𝑰 − 𝑓(𝑈𝒓)) is a prediction error (the one PC-Evoked is 

focussed on), while 
1

𝜎𝑡𝑑
2  is a precision and (𝒓𝑡𝑑 − 𝒓) a (higher level) prediction error, in their 

update equation for 𝒓: 

𝑑𝒓

𝑑𝑡
= −

𝑘1

2

𝜕𝐸

𝜕𝒓
=

𝑘1

𝜎2
𝑈𝑇

𝜕𝑓𝑇

𝜕𝑥
(𝑰 − 𝑓(𝑈𝒓)) +

𝑘1

𝜎𝑡𝑑
2

(𝒓𝑡𝑑 − 𝒓) −
𝑘1

2
𝑔′(𝒓) 

Removal of Excitatory Reversal Term: In our efforts to obtain a formulation of the PC-Evoked 

model in which the evoked response is fully quenched with sustained prediction, we 

explored a version of the model in which the excitatory reversal term was removed from all 

units; see subsection Sustained Prediction of section Simulations of the Results. We justify 
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the statement that this reduced version of a unit is more consistent with the Rao and 

Ballard model here. 

The relevant term in our equations is: 

𝐼𝑒(𝑡) = 𝑔𝑒(𝑡) ⋅ 𝐺𝑒 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉(𝑡)) 

which is changed to: 

𝐼𝑒(𝑡) = 𝑔𝑒(𝑡) ⋅ 𝐺𝑒 

This change brings the model more into line with Rao & Ballard’s equation: 

1

𝑘1

𝑑𝒓

𝑑𝑡
=

1

𝜎2
𝑤(𝑰 − 𝑤. 𝒓) − 𝐷𝒓 =

1

𝜎2
𝑤𝐼 −

1

𝜎2
𝑤. 𝑤𝑟 − 𝐷𝒓 

since the equivalent of 𝐼𝑒(𝑡) is 
1

𝜎2 𝑤𝐼, i.e. these are the excitatory contributions to the 

change in prediction, with 𝑔𝑒(𝑡) providing a weighting of the input in PC-Evoked. 

Hierarchical Model: In section 2nd-level Prediction Circuit: the Breakthrough-P3 of the 

main-body of the paper, we introduce a hierarchical extension of our predictive coding 

model, called the Hierarchical-PC-Evoked model. We give more background on this 

extension here. Firstly, figure App 3 relates the model to Rao & Ballard’s model, showing 

that there are structural correspondences between the two. 
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Figure App 3: Hierarchical PC-Evoked model compared to Rao and Ballard, where the Rao 

and Ballard model image (panel [B]) would have to be rotated to have input at the bottom to 

align with the Hierarchical PC-Evoked model (panel [A]). [A] Hierarchical PC-Evoked model in 

which a late circuit is added to the early circuit. We only depict the Stimulus 1 part of the full 

model. Also, we do not depict the blaster, which we add to the late circuit to simulate 

additive ensemble effects. [B] Rao and Ballard 2-level circuit, with annotations in red. [C] 

Mapping between PC-Evoked model and Rao and Ballard model. 

Hierarchical model derivation 

In the same way as we did in the derivation following inline heading “More Detailed Relating 

to Rao and Ballard Model” of Appendix 1, the update equation for 𝒓, 

𝑑𝒓

𝑑𝑡
= −

𝑘1

2

𝜕𝐸

𝜕𝒓
=

𝑘1

𝜎2
𝑈𝑇

𝜕𝑓𝑇

𝜕𝑥
(𝑰 − 𝑓(𝑈𝒓)) +

𝑘1

𝜎𝑡𝑑
2

(𝒓𝑡𝑑 − 𝒓) −
𝑘1

2
𝑔′(𝒓) 

can be simplified to, 

1

𝑘1

𝑑𝒓

𝑑𝑡
=

1

𝜎2
𝑤(𝑰 − 𝑤. 𝒓) +

1

𝜎𝑡𝑑
2

(𝒓𝑡𝑑 − 𝒓) −
𝑔′(𝒓)

2
 

If we again assume a Gaussian prior for 𝒓, then as previously, 𝑔’(𝒓) = 2𝛼𝒓. Now, we can 

rewrite our equation to,  

1

𝑘1

𝑑𝒓

𝑑𝑡
=

1

𝜎2
𝑤(𝑰 − 𝑤. 𝒓) +

1

𝜎𝑡𝑑
2

(𝒓𝑡𝑑 − 𝒓) −
2𝛼𝒓

2
 

=
1

𝜎2
𝑤(𝑰 − 𝑤. 𝒓) −

1

𝜎𝑡𝑑
2

(𝒓 − 𝒓𝑡𝑑) − 𝛼𝒓 

since 𝛼 is a positive constant, we can see that the term −𝛼𝒓 is a decay term, which we 

write, for notational consistency with earlier derivations, as −𝐷𝒓, with 𝐷 a positive 

constant. Thus, we have, 

1

𝑘1

𝑑𝒓

𝑑𝑡
=

1

𝜎2
𝑤(𝑰 − 𝑤. 𝒓) −

1

𝜎𝑡𝑑
2

(𝒓 − 𝒓𝑡𝑑) − 𝐷𝒓 

The terms that remain in this equation can (broadly) be related to the Hierarchical PC-

Evoked model (see figure App 3[A]) as follows: 
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• 
1

𝜎2 is the early circuit multiplicative precision; 

• 
1

𝜎𝑡𝑑
2  is the late circuit multiplicative precision; 

• 𝐼 is the input vector (s1 and s2); 

• 𝒓 corresponds to early prediction unit and 𝒓𝑡𝑑  to late prediction unit; 

• the decay is subsumed by the leak in the Hierarchical PC-Evoked equations, with 𝐷 

being reflected in the maximum conductance for the leak channel, 𝐺𝑙; 

• (𝑰 − 𝑤. 𝒓) here corresponds to the early prediction error and it is computed in 

Hierarchical PC-Evoked’s early prediction error unit; 

• 𝑤(𝑰 − 𝑤. 𝒓) here corresponds to the (excitatory) bottom-up input to the early 

prediction unit (after passing through the relay unit in Hierarchical PC-Evoked); 

• 𝒓 − 𝒓𝑡𝑑 here corresponds to the late prediction error, computed in Hierarchical PC-

Evoked’s late prediction error unit; and 

• −(𝒓 − 𝒓𝑡𝑑) here corresponds to the “effectively times -1” link in Hierarchical PC-

Evoked. 

Thus, we contend that broad correspondences can be made between the implementation of 

prediction in the Hierarchical PC-Evoked model and the update equation for 𝒓 from Rao and 

Ballard. Note, we are definitely not arguing for a quantitative correspondence between the 

two models, many things prevent this, including the very different activation equations 

used. 

Appendix 2: Precision, Gain and Attention 

The linking of precision to gain and also then to attention, is justified by a large body of 

literature. For example, Feldman & Friston (2010) (a highly influential paper that, as of 

10/5/2023, has 1310 citations) very explicitly makes this link, e.g. Feldman & Friston (2010) 

state that, “Inverse variance is called precision; therefore precision increases with certainty 

about states of the world. We will see that precision is encoded by the post-synaptic gain of 

sensory or prediction error-units. This means that state-dependent changes in precision may 

be modelled in the brain by activity-dependent modulation of the synaptic gain of principal 

cells originating forward connections. This is the optimization we associate with attention.”  
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This perspective on precision and attention is also shown in Figure App 4, which is a re-

presentation of Figure 2 from Kanai et al (2015). The purple lines transmit a setting of a 

modulatory gain, which manifests in the activation equations as a precision term. These 

modulatory links originate from the pulvinar, an area associated with top-down attentional 

control. In Kanai et al (2015),  it is explicitly stated that, “The prediction errors are weighted 

by their expected precision— which we have associated with projections from the pulvinar.” 

 

Figure App 4: Fristonian perspective on attention and precision: re-presentation of Figure 2 

from Kanai et al (2015), see caption in that paper for full details. For our purposes, these 

images show precision as a modulator on prediction errors; see purple lines, with precision-

setting neuron indicated with purple triangle. The image on the right is a more 

neurophysiologically detailed representation of the abstract representation on the left. The 

neuron setting precision is placed in the pulvinar, an area associated with top-down 

attentional control. 

The prediction we make for an interaction between attention and sensory noise (see 

subsection Shared channel saturation effect in section Counter-intuitive Prediction of 

Informal Predictions of Contra-predictive Pattern) is formulated assuming a single shared 

channel by which precision weights prediction errors. It is assumed that this single channel 

is shared between precision’s standard representation of the reciprocal of the sensory noise 
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level and by attentional influences. This idea of a shared channel is suggested by the theory 

developed in Feldman and Friston (2010). For example, Feldman and Friston (2010) 

explicitly state that, “Attention can be viewed as a selective sampling of sensory data that 

have high-precision (signal-to-noise) in relation to the model’s predictions.” and they also 

state that, “ [we] consider generative models in which the states of the world (for example 

the presence of attentional cues) can change the precision of sensory data. A simple 

example of this would be the direction (state) in which we pointed a searchlight. This 

determines which part of the sensorium contains precise information; namely visual 

information reflected by surfaces that are illuminated.” 

Thus, for Feldman and Friston, it is the case that attentional mechanisms will reduce sensory 

noise (although, see Bowman et al (2013a)). 

Appendix 3: Mathematical Definition of Responsiveness 

Our definition of neural responsiveness (see equation following Neural Responsiveness 

inline heading of Neural Simulations section), gives us the relationship shown in Figure 2, 

and reproduced here. 

 

 

Figure 2: neural responsiveness by precision: precision (π) is shown on the x-axis and 

responsiveness (ρ) on the y-axis. The time constant (τ) is set to 0.05. As a result, 
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responsiveness is 0.05, when precision is zero. Responsiveness rises as precision increases, 

asymptotically approaching 1 for large precisions. 

The properties that we wanted for our responsiveness variable were, 

1) a fixed minimum responsiveness, so responsiveness cannot go to zero, which would have 

“flat-lined” the model; 

2) a saturation level for precision, since there must be a maximum level for any parameter 

in the brain, due to fixed amounts of metabolic resource; 

3) a responsiveness profile that followed a neurophysiologically plausible increase with 

precision; the “top” of a logistic function (which is what we see here) is exactly this - see 

prominence of logistic functions as a standard activation function for a neuron. 

Figure 2 indicates that our implementation successfully realises these three properties. 

Appendix 4: Local vs global learning 

The Brain as Recognizer and the Brain as Predictor hypotheses bring with them associated 

learning algorithms, which inform the neurophysiological plausibility of these hypotheses. 

Firstly, as discussed previously, we take feedforward neural networks as the neuro-

computational underpinnings of the Brain as Recognizer position. The learning algorithm 

typically employed in this context is back-propagation of error (O’Reilly and Munakata, 

2000; Rumelhart, Hinton & Williams, 1986), in which, importantly, an error is determined at 

the output end of the neural network, and then propagated back through it. In this sense, 

back-propagation is a global learning rule – it is seeded at the output end and then passed 

backwards, to determine the contribution of earlier layers to that overall error. This leaves 

the question of how the error is transmitted backwards in the brain to neurons potentially 

many many synapses before the output layer. 

A key contribution of predictive coding is to suggest how a hierarchical generative model 

enables errors to be generated at all hierarchical levels through local “message” exchange 

(e.g. Rao & Ballard, 1999). Thus, predictive coding provides a local learning rule, which in 

this respect, could much more plausibly be found in the brain, essentially because it does 

not require a long-range error signal, which would impact the entire configuration of the 

brain. 
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To clarify, some connectionists have, in fact, emphasized prediction-like mechanisms for 

some time – see for example, O’Reilly and Munakata (Implicit Expectation in Figure 5.12 in 

O’Reilly and Munakata, 2000) and McClelland (McClelland, 1994), who discuss how 

expectation can be used to avoid the need for an explicit teacher. However, these 

formulations were still based upon back-propagation or variants of it, such as, the 

Generalised Recirculation algorithm (O’Reilly and Munakata, 2000; Su, Gomez and Bowman, 

2014). 

Interestingly, there has been recent work identifying mappings between back-propagation 

and predictive coding, e.g. Song et al (2020) and Whittington & Bogacz (2017), with the 

objective of finding a more biologically plausible (local-learning) version of back-

propagation. Could this line of research hold the key to reconciling the Brain as Recognizer 

with the Brain as Predictor? 

Appendix 5: Details of PC-Evoked model 

More mathematical details of the model are presented here. We present the full 

(hierarchical) model here. However, in the code, the early circuit, the simple (non-

hierarchical) PC-Evoked model, can be obtained by just instantiating the early circuit of the 

model, with the late circuit units not present. 

The model consists of two ‘circuits’: an early circuit and a late circuit. Subscripts indexing 

variables in the early circuit are in lowercase, whereas subscripts indexing variables in the 

late circuit are in uppercase. 

Membrane potential equation for early prediction error units (denoted Stim1_1 and 

Stim2_1 in Figure 1): 

�̇�𝜖
𝑗

= 𝜌𝜖(𝑡) ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑖(𝑡) + 𝐼𝑙(𝑡) 

𝐼𝑒(𝑡) = 𝑊𝑠𝜖 ⋅ 𝑠𝑗(𝑡) ⋅ 𝐺𝑒𝜖 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉𝜖
𝑗(𝑡)) 

𝐼𝑖(𝑡) = 𝑊𝑝𝜖 ⋅ 𝑉𝑝
𝑗(𝑡) ⋅ 𝐺𝑖𝜖 ⋅ (𝑅𝑒𝑣𝑖 − 𝑉𝜖

𝑗(𝑡)) 

𝐼𝑙(𝑡) = 𝐺𝑙𝜖 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝜖
𝑗(𝑡)) 

where the 𝜖 indicates an early circuit prediction error unit; 𝑗 ∈ {1, … , 𝑘} indexes the 

stimulus and 𝑘 is the number of stimuli; 𝜌𝜖(𝑡) is precision weighting of early prediction 
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error, effectively modulating the time constant; 𝑊𝑠𝜖 is the weight from the stimulus to the 

early prediction error units (this is the same for all stimuli); 𝑠𝑗(𝑡) is the stimulus input for 

stimulus 𝑗; 𝑊𝑝𝜖 is the weight from the 𝑗𝑡ℎ early prediction unit to the early prediction error 

unit (this is the same for all stimuli); 𝑉𝑝
𝑗(𝑡) is the membrane potential of the 𝑗𝑡ℎ early 

prediction unit at time 𝑡 (to be defined shortly). Additionally, since our output activation 

functions are the identity, 𝑉𝑝
𝑗(𝑡) is the output activation of the prediction unit. 

Membrane potential equation for early relay units (denoted Stim1_2 and Stim2_2 in Figure 

1): 

�̇�𝑟
𝑗

= 𝜏𝑟 ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑙(𝑡) 

𝐼𝑒(𝑡) = 𝑊𝜖𝑟 ⋅ 𝑉𝜖
𝑗(𝑡 − 𝑙𝑎𝑔𝑟) ⋅ 𝐺𝑒𝑟 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉𝑟

𝑗(𝑡)) 

𝐼𝑙(𝑡) = 𝐺𝑙𝑟 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝑟
𝑗(𝑡)) 

where 𝑟 indicates early relay unit; 𝑊𝜖𝑟 is the weight from the early prediction error unit to 

the early relay unit (the same for all stimuli); and 𝑉𝜖
𝑗
 is the membrane potential of the 𝑗𝑡ℎ 

early prediction error unit (as just defined); and 𝜏𝑟 is a time constant. For simplicity, we 

reference 𝑉𝜖
𝑗
 directly, without an activation equation. The time-lag between the early 

prediction error units and early relay units is handled by 𝑙𝑎𝑔𝑟. 

Membrane potential equation for early prediction units (denoted Stim1 prediction and 

Stim2 prediction in Figure 1): 

�̇�𝑝
𝑗

= 𝜏𝑝 ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑖(𝑡) + 𝐼𝑙(𝑡) 

𝐼𝑒(𝑡) = 𝑊𝑟𝑝 ⋅ 𝑉𝑟
𝑗
(𝑡 − 𝑙𝑎𝑔𝑝) ⋅ 𝐺𝑒𝑝 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉𝑝

𝑗(𝑡)) 

𝐼𝑖(𝑡) = 𝑊𝐸𝑝 ⋅ 𝑉𝐸
𝑗(𝑡) ⋅ 𝐺𝑖𝑝 ⋅ (𝑅𝑒𝑣𝑖 − 𝑉𝑝

𝑗(𝑡)) 

𝐼𝑙(𝑡) = 𝐺𝑙𝑝 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝑝
𝑗(𝑡)) 

where 𝑝 indicates early prediction unit; 𝑊𝑟𝑝 is the weight from the early relay unit to the 

early prediction unit; 𝑉𝑟
𝑗
 is the membrane potential of the early relay unit; 𝑊𝐸𝑝 is the weight 

from the late prediction error unit to the early prediction unit (marked “effectively times -1” 

in Figure App 3[A]); 𝑉𝐸
𝑗
 is the membrane potential of the late prediction error unit; and 𝜏𝑝 is 
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a time constant for the prediction unit. The time-lag between the early relay units and early 

prediction units is handled by 𝑙𝑎𝑔𝑝. 

Version 1 of late circuit (gain control): Membrane potential equation for late prediction 

error units (Stim1_3 in Figure 12 and note difference between lower and upper case 𝑝’s): 

�̇�𝐸
𝑗

= 𝜌𝐸(𝑡) ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑖(𝑡) + 𝐼𝑙(𝑡) 

𝐼𝑒(𝑡) = 𝑊𝑝𝐸 ⋅ 𝑉𝑝
𝑗(𝑡) ⋅ 𝐺𝑒𝐸 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉𝐸

𝑗(𝑡)) 

𝐼𝑖(𝑡) = 𝑊𝑃𝐸 ⋅ (𝑉𝑃
𝑗(𝑡) + 𝑇) ⋅ 𝐺𝑖𝐸 ⋅ (𝑅𝑒𝑣𝑖 − 𝑉𝐸

𝑗(𝑡)) 

𝐼𝑙(𝑡) = 𝐺𝑙𝐸 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝐸
𝑗(𝑡)) 

where 𝐸 indicates late prediction error unit;  𝑊𝑝𝐸 is the weight from the early prediction 

unit to the late prediction error unit; 𝑉𝑝
𝑗(𝑡) is the membrane potential of the early 

prediction unit (defined above); 𝑊𝑃𝐸 is the weight from the late prediction unit to the late 

prediction error unit; and 𝑉𝑃
𝑗(𝑡) is the membrane potential of the late prediction unit. 𝑇 is 

the tonically fixed task set (see Task demand in figure 12[A] and App 3[A]), which is set to 

0.13 in the late prediction error unit membrane potential equation for distractor stimuli and 

zero for targets. 

Membrane potential equation for late relay units (Stim1_4 in Figure 12): 

�̇�𝑅
𝑗

= 𝜏𝑅 ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑙(𝑡) 

𝐼𝑒(𝑡) = 𝑊𝐸𝑅 ⋅ 𝑉𝐸
𝑗(𝑡 − 𝑙𝑎𝑔𝑅) ⋅ 𝐺𝑒𝑅 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉𝑅

𝑗(𝑡)) 

𝐼𝑙(𝑡) = 𝐺𝑙𝑅 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝑅
𝑗(𝑡)) 

where 𝑅 indicates late relay unit;  𝑊𝐸𝑅 is the weight from the late prediction error unit to 

the late relay unit; 𝑉𝐸
𝑗(𝑡) is the membrane potential of the late prediction error unit; 𝜏𝑅 is a 

time constant for the late relay unit and the time-lag between the late prediction error and 

late relay units is handled by 𝑙𝑎𝑔𝑅. 

Membrane potential equation for late prediction units (Late prediction in Figure 12): 

�̇�𝑃
𝑗

= 𝜏𝑃 ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑙(𝑡) 
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𝐼𝑙(𝑡) = 𝐺𝑙𝑃 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝑃
𝑗(𝑡)) 

where 𝑃 indicates late prediction unit;  𝜏𝑃 is a time constant for the late prediction unit. 

Version 2 of late circuit (additive enhancement): For this second version of the late circuit, 

late relay, prediction and task demand are unchanged from version 1 (see figure 12[B]). 

However, late precision is removed, changing the input to the late prediction error unit and 

a blaster circuit is added. We outline the new equations here. 

Membrane potential equation for the blaster relay unit (see figure 12[B]): 

�̇�𝑏 = 𝜏𝑏 ⋅ 𝐼𝑛𝑒𝑡(𝑡) 
𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑙(𝑡) 
𝐼𝑒(𝑡) = 𝑊𝑠𝑏 ⋅ 𝑠1(𝑡) ⋅ 𝐺𝑒𝑏 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉𝑏(𝑡)) 

𝐼𝑙(𝑡) = 𝐺𝑙𝑏 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝑏(𝑡)) 

where 𝑠1(𝑡) is stimulus 1 input and 𝑊𝑠𝑏 is the weight from stimulus 1 to the blaster relay 

unit. This projection is only from stimulus 1 because it is assumed to be the only salient 

stimulus in the model. 

Membrane potential equation for the blaster unit11: 

�̇�𝐵 = 𝜏𝐵 ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑙(𝑡) 

𝐼𝑒(𝑡) = 𝑊𝑏𝐵 ⋅ 𝑉𝑏(𝑡)(𝑡 − 𝑙𝑎𝑔𝐵) ⋅ 𝐺𝑒𝐵 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉𝐵(𝑡)) 

𝐼𝑙(𝑡) = 𝐺𝑙𝐵 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝐵(𝑡)) 

where 𝑉𝐵(𝑡) is the membrane potential of the blaster unit; 𝑊𝑏𝐵 is the weight from the 

blaster relay unit to the blaster unit; 𝑉𝑏(𝑡) is the membrane potential of the blaster relay 

unit (defined above); and 𝜏𝐵 is a time constant for the blaster unit. 

As previously stated, membrane potential equations for the late prediction error unit 

change between Version 1 and 2 and become the following: 

�̇�𝐸
𝑗

= 𝜌𝐸(𝑡) ⋅ 𝐼𝑛𝑒𝑡(𝑡) 
𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑖(𝑡) + 𝐼𝑙(𝑡) 

 
11 The blaster (Bowman & Wyble; 2007) is a pure temporal spotlight, generating an item non-specific 
enhancement when a salient stimulus is detected. Here, this is implemented as an enhancement of the target. 
We could add blaster projections to distractors, but since these are (in any case) strongly suppressed at the 
second level, due to task-demand, the blaster would not be able to drive them to a meaningful level of 
activation. 
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𝐼𝑒(𝑡) = 𝑊𝑝𝐸 ⋅ (𝑉𝑝
𝑗(𝑡) + 𝑉𝐵(𝑡)) ⋅ 𝐺𝑒𝐸 ⋅ (𝑅𝑒𝑣𝑒 − 𝑉𝐸

𝑗(𝑡)) 

𝐼𝑖(𝑡) = 𝑊𝑃𝐸 ⋅ (𝑉𝑃
𝑗(𝑡) + 𝑇) ⋅ 𝐺𝑖𝐸 ⋅ (𝑅𝑒𝑣𝑖 − 𝑉𝐸

𝑗(𝑡)) 

𝐼𝑙(𝑡) = 𝐺𝑙𝐸 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝐸
𝑗(𝑡)) 

where the blaster membrane potential now enters as 𝑉𝐵(𝑡) and pairs of excitatory and of 

inhibitory inputs share the same weight, for simplicity. Also, the precision in 𝜌𝐸(𝑡) is set to 

zero. 

 

The following table gives the parameter settings of the model. 

Parameter Value Comment 

𝑊𝑠𝜖 0.1 The weight from the stimulus to the early prediction error 
units, early circuit (Stim1_1 and Stim2_1) 

𝑊𝜖𝑟 𝑊𝑝𝜖 The weight from the prediction error units to the relay 
units, early circuit 

𝑊𝑟𝑝 0.1 The weight from the relay units to the prediction units, 
early circuit 

𝑊𝑝𝜖 14.5 The weight from the prediction units to the prediction 
error units, early circuit 

𝑊𝑝𝐸 0.1 The weight from the early prediction unit to the late 
prediction error unit 

𝑊𝐸𝑝 0.1 The weight from the late prediction error unit to the early 
prediction unit 

𝑊𝐸𝑅 𝑊𝑃𝐸  The weight from the prediction error unit to the relay unit, 
late circuit 

𝑊𝑃𝐸  14.5 The weight from the prediction unit to the prediction error 
unit, late circuit 

𝑊𝑠𝑏 1 The weight from the stimulus to blaster relay unit 

𝐺𝑒𝜖 1 The max. excitatory conductance for prediction error 
units, early circuit 

𝐺𝑖𝜖 1 The max. inhibitory conductance for prediction error units, 
early circuit 

𝐺𝑙𝜖 0.9 The max. leak conductance for prediction error units, early 
circuit 

𝐺𝑒𝑟 1/𝑊𝜖𝑟 The max. excitatory conductance for relay units, early 
circuit 

𝐺𝑙𝑟 0.4 The max. leak conductance for relay units, early circuit 

𝐺𝑒𝑝 1 The max. excitatory conductance for prediction units, 
early circuit 

𝐺𝑖𝑝 1 The max. inhibitory conductance for prediction units, early 
circuit 

𝐺𝑙𝑝 0.1 The max. leak conductance for prediction units, early 
circuit 
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𝐺𝑒𝐸  1 The max. excitatory conductance for prediction error 
units, late circuit 

𝐺𝑖𝐸 1 The max. inhibitory conductance for prediction error units, 
late circuit 

𝐺𝑙𝐸 0.9 The max. leak conductance for prediction error units, late 
circuit 

𝐺𝑒𝑅 1/𝑊𝜖𝑟 The max. excitatory conductance for relay units, late 
circuit 

𝐺𝑙𝑅 0.4 The max. leak conductance for relay units, late circuit 

𝐺𝑒𝐵 1 The max. excitatory conductance for blaster units 

𝐺𝑙𝐵 0.9 The max. leak conductance for blaster units 

𝐺𝑙𝑃 0.1 The max. leak conductance for prediction units, late circuit 

𝐺𝑙𝑏 0.9 The max. leak conductance for blaster relay unit 

𝐺𝑒𝑏 1 The max. excitatory conductance for blaster relay unit 

𝑅𝑒𝑣𝑒 1 The excitatory reversal potential 

𝑅𝑒𝑣𝑖  0 The inhibitory reversal potential 

𝑅𝑒𝑣𝑙  0 The leak reversal potential 

𝜏𝜖 0.05 Early prediction error unit time constant 

𝜏𝑟 0.2 Early relay unit time constant 

𝜏𝑝 0.04 Early prediction unit time constant 

𝜏𝐸  0.01 Late prediction error time constant 

𝜏𝑅 0.01 Late relay unit time constant 

𝜏𝑃 0.04 Late prediction unit time constant 

𝜏𝑏 0.01 Time constant for blaster relay unit 

𝜏𝐵 0.01 Blaster unit time constant 

𝜋𝑒 0.54 Early prediction error unit precision (See Neural 
simulations section of Methods) 

𝜋𝐸  0.54 Late prediction error unit precision 

𝐶𝑒𝑟 -10 Early prediction error and relay unit presentation constant 
(See Neural simulations section of Methods) 

𝐶𝑝 -8 Early prediction unit presentation constant 

𝐶𝐸𝑅𝐵 10 Late prediction error, relay, and blaster unit presentation 
constant 

𝐶𝑃 8 Late prediction unit presentation constant 

𝑙𝑎𝑔𝑟 100𝑚𝑠 The time-lag between prediction error units and relay 
units, early circuit 

𝑙𝑎𝑔𝑝 70𝑚𝑠 The time-lag between relay units and prediction units, 
early circuit 

𝑙𝑎𝑔𝑅 150𝑚𝑠 The time-lag between prediction error units and relay 
units, late circuit 

𝑙𝑎𝑔𝑃 70𝑚𝑠 The time-lag between relay units and prediction units, late 
circuit 

𝑙𝑎𝑔𝐵 300𝑚𝑠 The time-lag between blaster relay and blaster unit 

 

The details of each simulation are as follows: 
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Simulation 1 – No gain 

No changes to standard parameter settings. 

Simulation 2 – Gain on 

Gain turned on, i.e. with 𝜌(𝑡) as per Eqn Responsiveness, as the time-constant and  

𝜏𝜖=0.05, no changes to other parameters.  

Simulation 3 – Titrating the gain and additive ensemble scale modulation 

Gain run for multiple precision values: 

𝜋𝑒 – Varied from 0 to 0.54 in steps of 0.02, with 𝜏𝜖=0.05. 

Simulation 4 – RSVP with one stimulus repeated 

Number of stimuli – 45. 

Length of simulation – 3000ms (This means stimuli are presented at 15Hz). 

Repeated stimuli with no changes to parameters, then with the following: 

𝜏𝑝 – 0.005, 

𝑊𝑝𝑒 – 100. 

Simulation 5 – RSVP vanishing current 

Number of stimuli – 40 (changed from 45, since removal of reversal term means that there 

can be instability with more repetitions). 

Length of simulation – 3000ms. 

With and without the excitatory reversal term in the membrane potential equation: 

𝜏𝑝 – 0.005, 

𝑊𝑝𝑒 – 100. 

Simulation 6 – RSVP with targets and distractors, and late circuit active, precision 

modulation 

Number of stimuli – 15, 

Number of streams – 2 (for SSVEP simulation) and 1 (for P3 late circuit), 

Parameters changed to the following: 

𝜏𝑝 – 0.005, 

𝑊𝑝𝑒 – 80, 

𝜋𝑒 – 0. 

And the following parameter is modulated for P3 simulation: 

𝜋𝐸 – from 0 to 0.54. 
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Simulation 7 – Blaster Simulation 

𝑊𝑏𝐵 – Varied from 0 (for non-salient stimuli) to 0.02 (for salient stimuli). 

 

Removal of Reversal term: the early prediction unit has the following dynamics when the 

reversal term is removed in Simulation 5: 

�̇�𝑝
𝑗

= 𝜏𝑝 ⋅ 𝐼𝑛𝑒𝑡(𝑡) 

𝐼𝑛𝑒𝑡(𝑡) = 𝐼𝑒(𝑡) + 𝐼𝑖(𝑡) + 𝐼𝑙(𝑡) 

𝐼𝑒(𝑡) = 𝑊𝑟𝑝 ⋅ 𝑉𝑟
𝑗

⋅ 𝐺𝑒𝑝 

𝐼𝑖(𝑡) = 𝑊𝐸𝑝 ⋅ 𝑉𝐸
𝑗

⋅ 𝐺𝑖𝑝 ⋅ (𝑅𝑒𝑣𝑖 − 𝑉𝑝
𝑗
(𝑡)) 

𝐼𝑙(𝑡) = 𝐺𝑙𝑝 ⋅ (𝑅𝑒𝑣𝑙 − 𝑉𝑝
𝑗
(𝑡)) 

 

Appendix 6: Frequency Domain Features for Additive Ensemble Effects 

We present, here, the, rather straightforward, frequency domain features of the Additive 

Ensemble Effect, i.e. scaling the evoked response. These are presented in figure App 5. 
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Figure 7 App 5: frequency domain features of contra-predictive pattern obtained from scale-

modulation reflecting additive ensemble effects (see Simulation 3 of Appendix 5). [A] time-

frequency feature obtained when 𝐼𝑐 = 1. [B] time-frequency feature obtained when 𝐼𝑐 = 2. [C] 

panel B minus panel A. Unlike Figure 5, no normalizations have been performed here, thus 

amplitude differences are observable. 
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